Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment
Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulati...
Gespeichert in:
Veröffentlicht in: | Theranostics 2022-01, Vol.12 (7), p.3273-3287 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3287 |
---|---|
container_issue | 7 |
container_start_page | 3273 |
container_title | Theranostics |
container_volume | 12 |
creator | Zhang, Yikui Lu, Shengjian Huang, Shenghai Yu, Zhonghao Xia, Tian Li, Mengyun Yang, Chen Mao, Yiyang Xu, Boyue Wang, Lixu Xu, Lei Shi, Jieliang Zhu, Xingfang Zhu, Senmiao Zhang, Si Qian, Haohua Hu, Yang Li, Wei Tu, Yunhai Wu, Wencan |
description | Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulation and artifacts. Therefore, a safe test with a strong and stable signal is highly desirable to assess optic nerve function, particularly in neurosurgical settings and animal experiments.
Minimally invasive trans-sphenoidal endoscopic recording of optic chiasmatic potential (OCP) was carried out with a titanium screw implanted onto the sphenoid bone beneath the optic chiasm in the goat, whose sphenoidal anatomy is more human-like than non-human primates.
The implantation procedure was swift (within 30 min) and did not cause any detectable abnormality in fetching/moving behaviors, skull CT scans and ophthalmic tests after surgery. Compared with traditional VEP, the amplitude of OCP was 5-10 times stronger, more sensitive to weak light stimulus and its subtle changes, and was more repeatable, even under extremely low general anesthesia. Moreover, the OCP signal relied on ipsilateral light stimulation, and was abolished immediately after complete optic nerve (ON) transection. Through proof-of-concept experiments, we demonstrated several potential applications of the OCP device: (1) real-time detector of ON function, (2) detector of region-biased retinal sensitivity, and (3) therapeutic electrical stimulator for the optic nerve with low and thus safe excitation threshold.
OCP developed in this study will be valuable for both vision research and clinical practice. This study also provides a safe endoscopic approach to implant skull base brain-machine interface, and a feasible
testbed (goat) for evaluating safety and efficacy of skull base brain-machine interface. |
doi_str_mv | 10.7150/thno.71164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9065198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664795031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-168003dd2453d3579f410194922f9a7fef016444dbcd7ad4cf7d2f6003233e423</originalsourceid><addsrcrecordid>eNpdUctu1TAQjRCIVqUbPgBZYoOQAnbsxAkLJFTxkip1A2tr4gfXJbGDJ7no_g8fylxaqoI3PrLPnDkzp6qeCv5Ki5a_XncpExKdelCdil72te4Uf3gPn1TniNecjuLNIIbH1YlsW6W15qfVr6tljZbZXQSc4QiXvPq0RpjYeGA-uYw2L9HCNB1YnJcJ0uodw-_bRAxAz-ZoS45pDxj3no0xo0-YyxsGbCwQUz0DySfPIlWWANYzWJaS6ZWFXNhRsEQC-4gbtV1g3f2EAwNEjziTmSfVowAT-vPb-6z6-uH9l4tP9eXVx88X7y5rq3i31qLrOZfONaqVTrZ6CEpwMaihacIAOvjAaU1KudE6DU7ZoF0TOqpppPSqkWfV2xvdZRtn7yy1LjCZpcQZysFkiObfnxR35lvem4F3rRh6EnhxK1Dyj83jauaI1k-0NJ83NE3XKT20XAqiPv-Pep23kmg80-iO952iAYj18oZFK0YsPtyZEdwc8zfH_M2f_In87L79O-rftOVv1sywmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760864579</pqid></control><display><type>article</type><title>Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Yikui ; Lu, Shengjian ; Huang, Shenghai ; Yu, Zhonghao ; Xia, Tian ; Li, Mengyun ; Yang, Chen ; Mao, Yiyang ; Xu, Boyue ; Wang, Lixu ; Xu, Lei ; Shi, Jieliang ; Zhu, Xingfang ; Zhu, Senmiao ; Zhang, Si ; Qian, Haohua ; Hu, Yang ; Li, Wei ; Tu, Yunhai ; Wu, Wencan</creator><creatorcontrib>Zhang, Yikui ; Lu, Shengjian ; Huang, Shenghai ; Yu, Zhonghao ; Xia, Tian ; Li, Mengyun ; Yang, Chen ; Mao, Yiyang ; Xu, Boyue ; Wang, Lixu ; Xu, Lei ; Shi, Jieliang ; Zhu, Xingfang ; Zhu, Senmiao ; Zhang, Si ; Qian, Haohua ; Hu, Yang ; Li, Wei ; Tu, Yunhai ; Wu, Wencan</creatorcontrib><description>Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulation and artifacts. Therefore, a safe test with a strong and stable signal is highly desirable to assess optic nerve function, particularly in neurosurgical settings and animal experiments.
Minimally invasive trans-sphenoidal endoscopic recording of optic chiasmatic potential (OCP) was carried out with a titanium screw implanted onto the sphenoid bone beneath the optic chiasm in the goat, whose sphenoidal anatomy is more human-like than non-human primates.
The implantation procedure was swift (within 30 min) and did not cause any detectable abnormality in fetching/moving behaviors, skull CT scans and ophthalmic tests after surgery. Compared with traditional VEP, the amplitude of OCP was 5-10 times stronger, more sensitive to weak light stimulus and its subtle changes, and was more repeatable, even under extremely low general anesthesia. Moreover, the OCP signal relied on ipsilateral light stimulation, and was abolished immediately after complete optic nerve (ON) transection. Through proof-of-concept experiments, we demonstrated several potential applications of the OCP device: (1) real-time detector of ON function, (2) detector of region-biased retinal sensitivity, and (3) therapeutic electrical stimulator for the optic nerve with low and thus safe excitation threshold.
OCP developed in this study will be valuable for both vision research and clinical practice. This study also provides a safe endoscopic approach to implant skull base brain-machine interface, and a feasible
testbed (goat) for evaluating safety and efficacy of skull base brain-machine interface.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.71164</identifier><identifier>PMID: 35547770</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Animal research ; Animals ; Biosensing Techniques ; Brain-Computer Interfaces ; Electrodes ; Endoscopy ; Medical imaging ; Optic Chiasm ; Optic nerve ; Research Paper ; Sinuses ; Skull Base - anatomy & histology ; Skull Base - surgery ; Surgery ; Visual Pathways</subject><ispartof>Theranostics, 2022-01, Vol.12 (7), p.3273-3287</ispartof><rights>The author(s).</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-168003dd2453d3579f410194922f9a7fef016444dbcd7ad4cf7d2f6003233e423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065198/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065198/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35547770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yikui</creatorcontrib><creatorcontrib>Lu, Shengjian</creatorcontrib><creatorcontrib>Huang, Shenghai</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Xia, Tian</creatorcontrib><creatorcontrib>Li, Mengyun</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Mao, Yiyang</creatorcontrib><creatorcontrib>Xu, Boyue</creatorcontrib><creatorcontrib>Wang, Lixu</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Shi, Jieliang</creatorcontrib><creatorcontrib>Zhu, Xingfang</creatorcontrib><creatorcontrib>Zhu, Senmiao</creatorcontrib><creatorcontrib>Zhang, Si</creatorcontrib><creatorcontrib>Qian, Haohua</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Tu, Yunhai</creatorcontrib><creatorcontrib>Wu, Wencan</creatorcontrib><title>Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulation and artifacts. Therefore, a safe test with a strong and stable signal is highly desirable to assess optic nerve function, particularly in neurosurgical settings and animal experiments.
Minimally invasive trans-sphenoidal endoscopic recording of optic chiasmatic potential (OCP) was carried out with a titanium screw implanted onto the sphenoid bone beneath the optic chiasm in the goat, whose sphenoidal anatomy is more human-like than non-human primates.
The implantation procedure was swift (within 30 min) and did not cause any detectable abnormality in fetching/moving behaviors, skull CT scans and ophthalmic tests after surgery. Compared with traditional VEP, the amplitude of OCP was 5-10 times stronger, more sensitive to weak light stimulus and its subtle changes, and was more repeatable, even under extremely low general anesthesia. Moreover, the OCP signal relied on ipsilateral light stimulation, and was abolished immediately after complete optic nerve (ON) transection. Through proof-of-concept experiments, we demonstrated several potential applications of the OCP device: (1) real-time detector of ON function, (2) detector of region-biased retinal sensitivity, and (3) therapeutic electrical stimulator for the optic nerve with low and thus safe excitation threshold.
OCP developed in this study will be valuable for both vision research and clinical practice. This study also provides a safe endoscopic approach to implant skull base brain-machine interface, and a feasible
testbed (goat) for evaluating safety and efficacy of skull base brain-machine interface.</description><subject>Animal research</subject><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Brain-Computer Interfaces</subject><subject>Electrodes</subject><subject>Endoscopy</subject><subject>Medical imaging</subject><subject>Optic Chiasm</subject><subject>Optic nerve</subject><subject>Research Paper</subject><subject>Sinuses</subject><subject>Skull Base - anatomy & histology</subject><subject>Skull Base - surgery</subject><subject>Surgery</subject><subject>Visual Pathways</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUctu1TAQjRCIVqUbPgBZYoOQAnbsxAkLJFTxkip1A2tr4gfXJbGDJ7no_g8fylxaqoI3PrLPnDkzp6qeCv5Ki5a_XncpExKdelCdil72te4Uf3gPn1TniNecjuLNIIbH1YlsW6W15qfVr6tljZbZXQSc4QiXvPq0RpjYeGA-uYw2L9HCNB1YnJcJ0uodw-_bRAxAz-ZoS45pDxj3no0xo0-YyxsGbCwQUz0DySfPIlWWANYzWJaS6ZWFXNhRsEQC-4gbtV1g3f2EAwNEjziTmSfVowAT-vPb-6z6-uH9l4tP9eXVx88X7y5rq3i31qLrOZfONaqVTrZ6CEpwMaihacIAOvjAaU1KudE6DU7ZoF0TOqpppPSqkWfV2xvdZRtn7yy1LjCZpcQZysFkiObfnxR35lvem4F3rRh6EnhxK1Dyj83jauaI1k-0NJ83NE3XKT20XAqiPv-Pep23kmg80-iO952iAYj18oZFK0YsPtyZEdwc8zfH_M2f_In87L79O-rftOVv1sywmg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhang, Yikui</creator><creator>Lu, Shengjian</creator><creator>Huang, Shenghai</creator><creator>Yu, Zhonghao</creator><creator>Xia, Tian</creator><creator>Li, Mengyun</creator><creator>Yang, Chen</creator><creator>Mao, Yiyang</creator><creator>Xu, Boyue</creator><creator>Wang, Lixu</creator><creator>Xu, Lei</creator><creator>Shi, Jieliang</creator><creator>Zhu, Xingfang</creator><creator>Zhu, Senmiao</creator><creator>Zhang, Si</creator><creator>Qian, Haohua</creator><creator>Hu, Yang</creator><creator>Li, Wei</creator><creator>Tu, Yunhai</creator><creator>Wu, Wencan</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220101</creationdate><title>Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment</title><author>Zhang, Yikui ; Lu, Shengjian ; Huang, Shenghai ; Yu, Zhonghao ; Xia, Tian ; Li, Mengyun ; Yang, Chen ; Mao, Yiyang ; Xu, Boyue ; Wang, Lixu ; Xu, Lei ; Shi, Jieliang ; Zhu, Xingfang ; Zhu, Senmiao ; Zhang, Si ; Qian, Haohua ; Hu, Yang ; Li, Wei ; Tu, Yunhai ; Wu, Wencan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-168003dd2453d3579f410194922f9a7fef016444dbcd7ad4cf7d2f6003233e423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal research</topic><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Brain-Computer Interfaces</topic><topic>Electrodes</topic><topic>Endoscopy</topic><topic>Medical imaging</topic><topic>Optic Chiasm</topic><topic>Optic nerve</topic><topic>Research Paper</topic><topic>Sinuses</topic><topic>Skull Base - anatomy & histology</topic><topic>Skull Base - surgery</topic><topic>Surgery</topic><topic>Visual Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yikui</creatorcontrib><creatorcontrib>Lu, Shengjian</creatorcontrib><creatorcontrib>Huang, Shenghai</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Xia, Tian</creatorcontrib><creatorcontrib>Li, Mengyun</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Mao, Yiyang</creatorcontrib><creatorcontrib>Xu, Boyue</creatorcontrib><creatorcontrib>Wang, Lixu</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Shi, Jieliang</creatorcontrib><creatorcontrib>Zhu, Xingfang</creatorcontrib><creatorcontrib>Zhu, Senmiao</creatorcontrib><creatorcontrib>Zhang, Si</creatorcontrib><creatorcontrib>Qian, Haohua</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Tu, Yunhai</creatorcontrib><creatorcontrib>Wu, Wencan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yikui</au><au>Lu, Shengjian</au><au>Huang, Shenghai</au><au>Yu, Zhonghao</au><au>Xia, Tian</au><au>Li, Mengyun</au><au>Yang, Chen</au><au>Mao, Yiyang</au><au>Xu, Boyue</au><au>Wang, Lixu</au><au>Xu, Lei</au><au>Shi, Jieliang</au><au>Zhu, Xingfang</au><au>Zhu, Senmiao</au><au>Zhang, Si</au><au>Qian, Haohua</au><au>Hu, Yang</au><au>Li, Wei</au><au>Tu, Yunhai</au><au>Wu, Wencan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>3273</spage><epage>3287</epage><pages>3273-3287</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulation and artifacts. Therefore, a safe test with a strong and stable signal is highly desirable to assess optic nerve function, particularly in neurosurgical settings and animal experiments.
Minimally invasive trans-sphenoidal endoscopic recording of optic chiasmatic potential (OCP) was carried out with a titanium screw implanted onto the sphenoid bone beneath the optic chiasm in the goat, whose sphenoidal anatomy is more human-like than non-human primates.
The implantation procedure was swift (within 30 min) and did not cause any detectable abnormality in fetching/moving behaviors, skull CT scans and ophthalmic tests after surgery. Compared with traditional VEP, the amplitude of OCP was 5-10 times stronger, more sensitive to weak light stimulus and its subtle changes, and was more repeatable, even under extremely low general anesthesia. Moreover, the OCP signal relied on ipsilateral light stimulation, and was abolished immediately after complete optic nerve (ON) transection. Through proof-of-concept experiments, we demonstrated several potential applications of the OCP device: (1) real-time detector of ON function, (2) detector of region-biased retinal sensitivity, and (3) therapeutic electrical stimulator for the optic nerve with low and thus safe excitation threshold.
OCP developed in this study will be valuable for both vision research and clinical practice. This study also provides a safe endoscopic approach to implant skull base brain-machine interface, and a feasible
testbed (goat) for evaluating safety and efficacy of skull base brain-machine interface.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>35547770</pmid><doi>10.7150/thno.71164</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1838-7640 |
ispartof | Theranostics, 2022-01, Vol.12 (7), p.3273-3287 |
issn | 1838-7640 1838-7640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9065198 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal research Animals Biosensing Techniques Brain-Computer Interfaces Electrodes Endoscopy Medical imaging Optic Chiasm Optic nerve Research Paper Sinuses Skull Base - anatomy & histology Skull Base - surgery Surgery Visual Pathways |
title | Optic chiasmatic potential by endoscopically implanted skull base microinvasive biosensor: a brain-machine interface approach for anterior visual pathway assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optic%20chiasmatic%20potential%20by%20endoscopically%20implanted%20skull%20base%20microinvasive%20biosensor:%20a%20brain-machine%20interface%20approach%20for%20anterior%20visual%20pathway%20assessment&rft.jtitle=Theranostics&rft.au=Zhang,%20Yikui&rft.date=2022-01-01&rft.volume=12&rft.issue=7&rft.spage=3273&rft.epage=3287&rft.pages=3273-3287&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.71164&rft_dat=%3Cproquest_pubme%3E2664795031%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760864579&rft_id=info:pmid/35547770&rfr_iscdi=true |