Pancreatic islet reserve in type 1 diabetes

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2021-07, Vol.1495 (1), p.40-54
Hauptverfasser: Flatt, Anneliese J. S., Greenbaum, Carla J., Shaw, James A. M., Rickels, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 40
container_title Annals of the New York Academy of Sciences
container_volume 1495
creator Flatt, Anneliese J. S.
Greenbaum, Carla J.
Shaw, James A. M.
Rickels, Michael R.
description Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy. One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.
doi_str_mv 10.1111/nyas.14572
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551572149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</originalsourceid><addsrcrecordid>eNp9kctKw0AUhgdRbK1ufAAJuBElda5JZiOU4g2KCnbjajhJTnRKmtSZtNK3N7W1qAtncxbz8Z3LT8gxo33WvstqCb7PpIr5DumyWOowigTfJV1K4zhMNBcdcuD9hFLGExnvk44QSlGV6C65eIIqcwiNzQLrS2wChx7dAgNbBc1yhgELcgspNugPyV4BpcejTe2R8c31eHgXjh5v74eDUZhJmfAwYZijKIAhxRwynQlIJcqIRhGyvGApzdMohZRCUaRMF4KDElQDjyXEVIseuVprZ_N0inmGVeOgNDNnp-CWpgZrfv9U9s281gujqdJaqVZwthG4-n2OvjFT6zMsS6iwnnvDZRJLEfFk1ev0Dzqp565qtzNcKdaelMkVdb6mMld777DYDsOoWUVgVhGYrwha-OTn-Fv0--YtwNbAhy1x-Y_KPLwMntfSTwBVkZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551572149</pqid></control><display><type>article</type><title>Pancreatic islet reserve in type 1 diabetes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</creator><creatorcontrib>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</creatorcontrib><description>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels &gt;0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy. One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14572</identifier><identifier>PMID: 33550589</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Autoimmune diseases ; Autoimmunity ; Beta cells ; Blood glucose ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - physiopathology ; Glucagon ; Glucagon - metabolism ; Glucose ; Glucose - metabolism ; Glucose tolerance ; Humans ; Hyperglycemia ; Hyperglycemia - pathology ; Immunological tolerance ; Insulin ; Insulin - biosynthesis ; Insulin - metabolism ; Insulin secretion ; Insulin Secretion - physiology ; Insulin-Secreting Cells - immunology ; Insulin-Secreting Cells - pathology ; Islet cells ; Pancreas ; pancreatic islet ; Pancreatic islet transplantation ; Peptides ; Reserve capacity ; Secretion ; Transplantation ; type 1 diabetes ; α cell ; β cell</subject><ispartof>Annals of the New York Academy of Sciences, 2021-07, Vol.1495 (1), p.40-54</ispartof><rights>2021 New York Academy of Sciences.</rights><rights>2021 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</citedby><cites>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</cites><orcidid>0000-0003-4451-9800 ; 0000-0002-9253-838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14572$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14572$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33550589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flatt, Anneliese J. S.</creatorcontrib><creatorcontrib>Greenbaum, Carla J.</creatorcontrib><creatorcontrib>Shaw, James A. M.</creatorcontrib><creatorcontrib>Rickels, Michael R.</creatorcontrib><title>Pancreatic islet reserve in type 1 diabetes</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels &gt;0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy. One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</description><subject>Autoimmune diseases</subject><subject>Autoimmunity</subject><subject>Beta cells</subject><subject>Blood glucose</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - physiopathology</subject><subject>Glucagon</subject><subject>Glucagon - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose tolerance</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - pathology</subject><subject>Immunological tolerance</subject><subject>Insulin</subject><subject>Insulin - biosynthesis</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin Secretion - physiology</subject><subject>Insulin-Secreting Cells - immunology</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Islet cells</subject><subject>Pancreas</subject><subject>pancreatic islet</subject><subject>Pancreatic islet transplantation</subject><subject>Peptides</subject><subject>Reserve capacity</subject><subject>Secretion</subject><subject>Transplantation</subject><subject>type 1 diabetes</subject><subject>α cell</subject><subject>β cell</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctKw0AUhgdRbK1ufAAJuBElda5JZiOU4g2KCnbjajhJTnRKmtSZtNK3N7W1qAtncxbz8Z3LT8gxo33WvstqCb7PpIr5DumyWOowigTfJV1K4zhMNBcdcuD9hFLGExnvk44QSlGV6C65eIIqcwiNzQLrS2wChx7dAgNbBc1yhgELcgspNugPyV4BpcejTe2R8c31eHgXjh5v74eDUZhJmfAwYZijKIAhxRwynQlIJcqIRhGyvGApzdMohZRCUaRMF4KDElQDjyXEVIseuVprZ_N0inmGVeOgNDNnp-CWpgZrfv9U9s281gujqdJaqVZwthG4-n2OvjFT6zMsS6iwnnvDZRJLEfFk1ev0Dzqp565qtzNcKdaelMkVdb6mMld777DYDsOoWUVgVhGYrwha-OTn-Fv0--YtwNbAhy1x-Y_KPLwMntfSTwBVkZs</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Flatt, Anneliese J. S.</creator><creator>Greenbaum, Carla J.</creator><creator>Shaw, James A. M.</creator><creator>Rickels, Michael R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4451-9800</orcidid><orcidid>https://orcid.org/0000-0002-9253-838X</orcidid></search><sort><creationdate>202107</creationdate><title>Pancreatic islet reserve in type 1 diabetes</title><author>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoimmune diseases</topic><topic>Autoimmunity</topic><topic>Beta cells</topic><topic>Blood glucose</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - physiopathology</topic><topic>Glucagon</topic><topic>Glucagon - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose tolerance</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - pathology</topic><topic>Immunological tolerance</topic><topic>Insulin</topic><topic>Insulin - biosynthesis</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin Secretion - physiology</topic><topic>Insulin-Secreting Cells - immunology</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Islet cells</topic><topic>Pancreas</topic><topic>pancreatic islet</topic><topic>Pancreatic islet transplantation</topic><topic>Peptides</topic><topic>Reserve capacity</topic><topic>Secretion</topic><topic>Transplantation</topic><topic>type 1 diabetes</topic><topic>α cell</topic><topic>β cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flatt, Anneliese J. S.</creatorcontrib><creatorcontrib>Greenbaum, Carla J.</creatorcontrib><creatorcontrib>Shaw, James A. M.</creatorcontrib><creatorcontrib>Rickels, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flatt, Anneliese J. S.</au><au>Greenbaum, Carla J.</au><au>Shaw, James A. M.</au><au>Rickels, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pancreatic islet reserve in type 1 diabetes</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2021-07</date><risdate>2021</risdate><volume>1495</volume><issue>1</issue><spage>40</spage><epage>54</epage><pages>40-54</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels &gt;0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy. One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33550589</pmid><doi>10.1111/nyas.14572</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4451-9800</orcidid><orcidid>https://orcid.org/0000-0002-9253-838X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2021-07, Vol.1495 (1), p.40-54
issn 0077-8923
1749-6632
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059955
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Autoimmune diseases
Autoimmunity
Beta cells
Blood glucose
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - physiopathology
Glucagon
Glucagon - metabolism
Glucose
Glucose - metabolism
Glucose tolerance
Humans
Hyperglycemia
Hyperglycemia - pathology
Immunological tolerance
Insulin
Insulin - biosynthesis
Insulin - metabolism
Insulin secretion
Insulin Secretion - physiology
Insulin-Secreting Cells - immunology
Insulin-Secreting Cells - pathology
Islet cells
Pancreas
pancreatic islet
Pancreatic islet transplantation
Peptides
Reserve capacity
Secretion
Transplantation
type 1 diabetes
α cell
β cell
title Pancreatic islet reserve in type 1 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pancreatic%20islet%20reserve%20in%20type%201%20diabetes&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Flatt,%20Anneliese%20J.%20S.&rft.date=2021-07&rft.volume=1495&rft.issue=1&rft.spage=40&rft.epage=54&rft.pages=40-54&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14572&rft_dat=%3Cproquest_pubme%3E2551572149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551572149&rft_id=info:pmid/33550589&rfr_iscdi=true