Pancreatic islet reserve in type 1 diabetes
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secre...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2021-07, Vol.1495 (1), p.40-54 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1495 |
creator | Flatt, Anneliese J. S. Greenbaum, Carla J. Shaw, James A. M. Rickels, Michael R. |
description | Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy.
One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass. |
doi_str_mv | 10.1111/nyas.14572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551572149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</originalsourceid><addsrcrecordid>eNp9kctKw0AUhgdRbK1ufAAJuBElda5JZiOU4g2KCnbjajhJTnRKmtSZtNK3N7W1qAtncxbz8Z3LT8gxo33WvstqCb7PpIr5DumyWOowigTfJV1K4zhMNBcdcuD9hFLGExnvk44QSlGV6C65eIIqcwiNzQLrS2wChx7dAgNbBc1yhgELcgspNugPyV4BpcejTe2R8c31eHgXjh5v74eDUZhJmfAwYZijKIAhxRwynQlIJcqIRhGyvGApzdMohZRCUaRMF4KDElQDjyXEVIseuVprZ_N0inmGVeOgNDNnp-CWpgZrfv9U9s281gujqdJaqVZwthG4-n2OvjFT6zMsS6iwnnvDZRJLEfFk1ev0Dzqp565qtzNcKdaelMkVdb6mMld777DYDsOoWUVgVhGYrwha-OTn-Fv0--YtwNbAhy1x-Y_KPLwMntfSTwBVkZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551572149</pqid></control><display><type>article</type><title>Pancreatic islet reserve in type 1 diabetes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</creator><creatorcontrib>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</creatorcontrib><description>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy.
One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14572</identifier><identifier>PMID: 33550589</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Autoimmune diseases ; Autoimmunity ; Beta cells ; Blood glucose ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - physiopathology ; Glucagon ; Glucagon - metabolism ; Glucose ; Glucose - metabolism ; Glucose tolerance ; Humans ; Hyperglycemia ; Hyperglycemia - pathology ; Immunological tolerance ; Insulin ; Insulin - biosynthesis ; Insulin - metabolism ; Insulin secretion ; Insulin Secretion - physiology ; Insulin-Secreting Cells - immunology ; Insulin-Secreting Cells - pathology ; Islet cells ; Pancreas ; pancreatic islet ; Pancreatic islet transplantation ; Peptides ; Reserve capacity ; Secretion ; Transplantation ; type 1 diabetes ; α cell ; β cell</subject><ispartof>Annals of the New York Academy of Sciences, 2021-07, Vol.1495 (1), p.40-54</ispartof><rights>2021 New York Academy of Sciences.</rights><rights>2021 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</citedby><cites>FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</cites><orcidid>0000-0003-4451-9800 ; 0000-0002-9253-838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14572$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14572$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33550589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flatt, Anneliese J. S.</creatorcontrib><creatorcontrib>Greenbaum, Carla J.</creatorcontrib><creatorcontrib>Shaw, James A. M.</creatorcontrib><creatorcontrib>Rickels, Michael R.</creatorcontrib><title>Pancreatic islet reserve in type 1 diabetes</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy.
One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</description><subject>Autoimmune diseases</subject><subject>Autoimmunity</subject><subject>Beta cells</subject><subject>Blood glucose</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - physiopathology</subject><subject>Glucagon</subject><subject>Glucagon - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose tolerance</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - pathology</subject><subject>Immunological tolerance</subject><subject>Insulin</subject><subject>Insulin - biosynthesis</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin Secretion - physiology</subject><subject>Insulin-Secreting Cells - immunology</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Islet cells</subject><subject>Pancreas</subject><subject>pancreatic islet</subject><subject>Pancreatic islet transplantation</subject><subject>Peptides</subject><subject>Reserve capacity</subject><subject>Secretion</subject><subject>Transplantation</subject><subject>type 1 diabetes</subject><subject>α cell</subject><subject>β cell</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctKw0AUhgdRbK1ufAAJuBElda5JZiOU4g2KCnbjajhJTnRKmtSZtNK3N7W1qAtncxbz8Z3LT8gxo33WvstqCb7PpIr5DumyWOowigTfJV1K4zhMNBcdcuD9hFLGExnvk44QSlGV6C65eIIqcwiNzQLrS2wChx7dAgNbBc1yhgELcgspNugPyV4BpcejTe2R8c31eHgXjh5v74eDUZhJmfAwYZijKIAhxRwynQlIJcqIRhGyvGApzdMohZRCUaRMF4KDElQDjyXEVIseuVprZ_N0inmGVeOgNDNnp-CWpgZrfv9U9s281gujqdJaqVZwthG4-n2OvjFT6zMsS6iwnnvDZRJLEfFk1ev0Dzqp565qtzNcKdaelMkVdb6mMld777DYDsOoWUVgVhGYrwha-OTn-Fv0--YtwNbAhy1x-Y_KPLwMntfSTwBVkZs</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Flatt, Anneliese J. S.</creator><creator>Greenbaum, Carla J.</creator><creator>Shaw, James A. M.</creator><creator>Rickels, Michael R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4451-9800</orcidid><orcidid>https://orcid.org/0000-0002-9253-838X</orcidid></search><sort><creationdate>202107</creationdate><title>Pancreatic islet reserve in type 1 diabetes</title><author>Flatt, Anneliese J. S. ; Greenbaum, Carla J. ; Shaw, James A. M. ; Rickels, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-81ede3fa1e0edac9c3ab4e46066e1df1b0db6bab0affb19f32a5309a274a7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoimmune diseases</topic><topic>Autoimmunity</topic><topic>Beta cells</topic><topic>Blood glucose</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - physiopathology</topic><topic>Glucagon</topic><topic>Glucagon - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose tolerance</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - pathology</topic><topic>Immunological tolerance</topic><topic>Insulin</topic><topic>Insulin - biosynthesis</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin Secretion - physiology</topic><topic>Insulin-Secreting Cells - immunology</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Islet cells</topic><topic>Pancreas</topic><topic>pancreatic islet</topic><topic>Pancreatic islet transplantation</topic><topic>Peptides</topic><topic>Reserve capacity</topic><topic>Secretion</topic><topic>Transplantation</topic><topic>type 1 diabetes</topic><topic>α cell</topic><topic>β cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flatt, Anneliese J. S.</creatorcontrib><creatorcontrib>Greenbaum, Carla J.</creatorcontrib><creatorcontrib>Shaw, James A. M.</creatorcontrib><creatorcontrib>Rickels, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flatt, Anneliese J. S.</au><au>Greenbaum, Carla J.</au><au>Shaw, James A. M.</au><au>Rickels, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pancreatic islet reserve in type 1 diabetes</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2021-07</date><risdate>2021</risdate><volume>1495</volume><issue>1</issue><spage>40</spage><epage>54</epage><pages>40-54</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first‐phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C‐peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C‐peptide appears necessary for evidencing glucose‐dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy.
One goal of staging presymptomatic type 1 diabetes (T1D) is to enable early immune intervention strategies aimed at preventing or ameliorating symptomatic diabetes through preservation of sufficient pancreatic functional β cell mass to maintain (near)normoglycemia. Preservation of endogenous β cell function after clinical diagnosis is also important in facilitating optimal metabolic control. The objective of this review is to examine the physiological and clinical correlates of pancreatic islet reserve at each stage of T1D in order to aid understanding of pancreatic islet physiology informing interventions to maintain or restore a functional β cell mass.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33550589</pmid><doi>10.1111/nyas.14572</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4451-9800</orcidid><orcidid>https://orcid.org/0000-0002-9253-838X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2021-07, Vol.1495 (1), p.40-54 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059955 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Autoimmune diseases Autoimmunity Beta cells Blood glucose Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - physiopathology Glucagon Glucagon - metabolism Glucose Glucose - metabolism Glucose tolerance Humans Hyperglycemia Hyperglycemia - pathology Immunological tolerance Insulin Insulin - biosynthesis Insulin - metabolism Insulin secretion Insulin Secretion - physiology Insulin-Secreting Cells - immunology Insulin-Secreting Cells - pathology Islet cells Pancreas pancreatic islet Pancreatic islet transplantation Peptides Reserve capacity Secretion Transplantation type 1 diabetes α cell β cell |
title | Pancreatic islet reserve in type 1 diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pancreatic%20islet%20reserve%20in%20type%201%20diabetes&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Flatt,%20Anneliese%20J.%20S.&rft.date=2021-07&rft.volume=1495&rft.issue=1&rft.spage=40&rft.epage=54&rft.pages=40-54&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14572&rft_dat=%3Cproquest_pubme%3E2551572149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551572149&rft_id=info:pmid/33550589&rfr_iscdi=true |