Photo-enhanced gas sensing of SnS2 with nanoscale defects

Recently a SnS2 based NO2 gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS2 grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-01, Vol.9 (2), p.626-635
Hauptverfasser: Wen-Jie, Yan, Deng-Yun, Chen, Huei-Ru Fuh, Ying-Lan, Li, Zhang, Duan, Liu, Huajun, Wu, Gang, Zhang, Lei, Ren, Xiangkui, Cho, Jiung, Choi, Miri, Byong Sun Chun, Cormac Ó Coileáin, Hong-Jun, Xu, Wang, Zhi, Jiang, Zhaotan, Ching-Ray, Chang, Han-Chun, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 635
container_issue 2
container_start_page 626
container_title RSC advances
container_volume 9
creator Wen-Jie, Yan
Deng-Yun, Chen
Huei-Ru Fuh
Ying-Lan, Li
Zhang, Duan
Liu, Huajun
Wu, Gang
Zhang, Lei
Ren, Xiangkui
Cho, Jiung
Choi, Miri
Byong Sun Chun
Cormac Ó Coileáin
Hong-Jun, Xu
Wang, Zhi
Jiang, Zhaotan
Ching-Ray, Chang
Han-Chun, Wu
description Recently a SnS2 based NO2 gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS2 grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the performance of a NO2 gas sensor based on SnS2 with nanoscale defects by photon illumination, and a detection limit of 2.5 ppb is achieved at room temperature. Using a classical Langmuir model and density functional theory simulations, we show S vacancies work as additional adsorption sites with fast adsorption times, higher adsorption energies, and an order of magnitude higher resistance change compared with pristine SnS2. More interestingly, when electron–hole pairs are excited by photon illumination, the average adsorption time first increases and then decreases with NO2 concentration, while the average desorption time always decreases with NO2 concentration. Our results give a deep understanding of photo-enhanced gas sensing of SnS2 with nanoscale defects, and thus open an interesting window for the design of high performance gas sensing devices based on 2D materials.
doi_str_mv 10.1039/c8ra08857h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166100760</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-25474d9cdf5653e85b26fcaa417fb1f457c9f8f5409e79590ddf870d532cdb5c3</originalsourceid><addsrcrecordid>eNpdj0tLw0AYRQdBbKnd-AsCbtxE55FvHhtBii8QFKrrYTKPJiWdqZlE8d8bsRu9m7u4hwMXoTOCLwlm6srK3mApQTRHaE5xxUuKuZqhZc5bPIUDoZycoBkDIAIkzJF6adKQSh8bE613xcbkIvuY27gpUijWcU2Lz3ZoimhiytZ0vnA-eDvkU3QcTJf98tAL9HZ3-7p6KJ-e7x9XN0_lnjIxlBQqUTllXQAOzEuoKQ_WmIqIUJNQgbAqyAAVVl4oUNi5IAV2wKh1NVi2QNe_3v1Y77yzPg696fS-b3em_9LJtPrvEttGb9KHVhhUpfgkuDgI-vQ--jzoXZut7zoTfRqzppwTLKTkakLP_6HbNPZxuqcp-cGw4Jh9A2DTbWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166100760</pqid></control><display><type>article</type><title>Photo-enhanced gas sensing of SnS2 with nanoscale defects</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wen-Jie, Yan ; Deng-Yun, Chen ; Huei-Ru Fuh ; Ying-Lan, Li ; Zhang, Duan ; Liu, Huajun ; Wu, Gang ; Zhang, Lei ; Ren, Xiangkui ; Cho, Jiung ; Choi, Miri ; Byong Sun Chun ; Cormac Ó Coileáin ; Hong-Jun, Xu ; Wang, Zhi ; Jiang, Zhaotan ; Ching-Ray, Chang ; Han-Chun, Wu</creator><creatorcontrib>Wen-Jie, Yan ; Deng-Yun, Chen ; Huei-Ru Fuh ; Ying-Lan, Li ; Zhang, Duan ; Liu, Huajun ; Wu, Gang ; Zhang, Lei ; Ren, Xiangkui ; Cho, Jiung ; Choi, Miri ; Byong Sun Chun ; Cormac Ó Coileáin ; Hong-Jun, Xu ; Wang, Zhi ; Jiang, Zhaotan ; Ching-Ray, Chang ; Han-Chun, Wu</creatorcontrib><description>Recently a SnS2 based NO2 gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS2 grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the performance of a NO2 gas sensor based on SnS2 with nanoscale defects by photon illumination, and a detection limit of 2.5 ppb is achieved at room temperature. Using a classical Langmuir model and density functional theory simulations, we show S vacancies work as additional adsorption sites with fast adsorption times, higher adsorption energies, and an order of magnitude higher resistance change compared with pristine SnS2. More interestingly, when electron–hole pairs are excited by photon illumination, the average adsorption time first increases and then decreases with NO2 concentration, while the average desorption time always decreases with NO2 concentration. Our results give a deep understanding of photo-enhanced gas sensing of SnS2 with nanoscale defects, and thus open an interesting window for the design of high performance gas sensing devices based on 2D materials.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra08857h</identifier><identifier>PMID: 35517585</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Chemical vapor deposition ; Chemistry ; Computer simulation ; Defects ; Density functional theory ; Design defects ; Detection ; Gas sensors ; Illumination ; Nitrogen dioxide ; Organic chemistry ; Tin disulfide</subject><ispartof>RSC advances, 2019-01, Vol.9 (2), p.626-635</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wen-Jie, Yan</creatorcontrib><creatorcontrib>Deng-Yun, Chen</creatorcontrib><creatorcontrib>Huei-Ru Fuh</creatorcontrib><creatorcontrib>Ying-Lan, Li</creatorcontrib><creatorcontrib>Zhang, Duan</creatorcontrib><creatorcontrib>Liu, Huajun</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ren, Xiangkui</creatorcontrib><creatorcontrib>Cho, Jiung</creatorcontrib><creatorcontrib>Choi, Miri</creatorcontrib><creatorcontrib>Byong Sun Chun</creatorcontrib><creatorcontrib>Cormac Ó Coileáin</creatorcontrib><creatorcontrib>Hong-Jun, Xu</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Jiang, Zhaotan</creatorcontrib><creatorcontrib>Ching-Ray, Chang</creatorcontrib><creatorcontrib>Han-Chun, Wu</creatorcontrib><title>Photo-enhanced gas sensing of SnS2 with nanoscale defects</title><title>RSC advances</title><description>Recently a SnS2 based NO2 gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS2 grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the performance of a NO2 gas sensor based on SnS2 with nanoscale defects by photon illumination, and a detection limit of 2.5 ppb is achieved at room temperature. Using a classical Langmuir model and density functional theory simulations, we show S vacancies work as additional adsorption sites with fast adsorption times, higher adsorption energies, and an order of magnitude higher resistance change compared with pristine SnS2. More interestingly, when electron–hole pairs are excited by photon illumination, the average adsorption time first increases and then decreases with NO2 concentration, while the average desorption time always decreases with NO2 concentration. Our results give a deep understanding of photo-enhanced gas sensing of SnS2 with nanoscale defects, and thus open an interesting window for the design of high performance gas sensing devices based on 2D materials.</description><subject>Adsorption</subject><subject>Chemical vapor deposition</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Design defects</subject><subject>Detection</subject><subject>Gas sensors</subject><subject>Illumination</subject><subject>Nitrogen dioxide</subject><subject>Organic chemistry</subject><subject>Tin disulfide</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLw0AYRQdBbKnd-AsCbtxE55FvHhtBii8QFKrrYTKPJiWdqZlE8d8bsRu9m7u4hwMXoTOCLwlm6srK3mApQTRHaE5xxUuKuZqhZc5bPIUDoZycoBkDIAIkzJF6adKQSh8bE613xcbkIvuY27gpUijWcU2Lz3ZoimhiytZ0vnA-eDvkU3QcTJf98tAL9HZ3-7p6KJ-e7x9XN0_lnjIxlBQqUTllXQAOzEuoKQ_WmIqIUJNQgbAqyAAVVl4oUNi5IAV2wKh1NVi2QNe_3v1Y77yzPg696fS-b3em_9LJtPrvEttGb9KHVhhUpfgkuDgI-vQ--jzoXZut7zoTfRqzppwTLKTkakLP_6HbNPZxuqcp-cGw4Jh9A2DTbWM</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Wen-Jie, Yan</creator><creator>Deng-Yun, Chen</creator><creator>Huei-Ru Fuh</creator><creator>Ying-Lan, Li</creator><creator>Zhang, Duan</creator><creator>Liu, Huajun</creator><creator>Wu, Gang</creator><creator>Zhang, Lei</creator><creator>Ren, Xiangkui</creator><creator>Cho, Jiung</creator><creator>Choi, Miri</creator><creator>Byong Sun Chun</creator><creator>Cormac Ó Coileáin</creator><creator>Hong-Jun, Xu</creator><creator>Wang, Zhi</creator><creator>Jiang, Zhaotan</creator><creator>Ching-Ray, Chang</creator><creator>Han-Chun, Wu</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190102</creationdate><title>Photo-enhanced gas sensing of SnS2 with nanoscale defects</title><author>Wen-Jie, Yan ; Deng-Yun, Chen ; Huei-Ru Fuh ; Ying-Lan, Li ; Zhang, Duan ; Liu, Huajun ; Wu, Gang ; Zhang, Lei ; Ren, Xiangkui ; Cho, Jiung ; Choi, Miri ; Byong Sun Chun ; Cormac Ó Coileáin ; Hong-Jun, Xu ; Wang, Zhi ; Jiang, Zhaotan ; Ching-Ray, Chang ; Han-Chun, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-25474d9cdf5653e85b26fcaa417fb1f457c9f8f5409e79590ddf870d532cdb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Chemical vapor deposition</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Design defects</topic><topic>Detection</topic><topic>Gas sensors</topic><topic>Illumination</topic><topic>Nitrogen dioxide</topic><topic>Organic chemistry</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen-Jie, Yan</creatorcontrib><creatorcontrib>Deng-Yun, Chen</creatorcontrib><creatorcontrib>Huei-Ru Fuh</creatorcontrib><creatorcontrib>Ying-Lan, Li</creatorcontrib><creatorcontrib>Zhang, Duan</creatorcontrib><creatorcontrib>Liu, Huajun</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Ren, Xiangkui</creatorcontrib><creatorcontrib>Cho, Jiung</creatorcontrib><creatorcontrib>Choi, Miri</creatorcontrib><creatorcontrib>Byong Sun Chun</creatorcontrib><creatorcontrib>Cormac Ó Coileáin</creatorcontrib><creatorcontrib>Hong-Jun, Xu</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Jiang, Zhaotan</creatorcontrib><creatorcontrib>Ching-Ray, Chang</creatorcontrib><creatorcontrib>Han-Chun, Wu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen-Jie, Yan</au><au>Deng-Yun, Chen</au><au>Huei-Ru Fuh</au><au>Ying-Lan, Li</au><au>Zhang, Duan</au><au>Liu, Huajun</au><au>Wu, Gang</au><au>Zhang, Lei</au><au>Ren, Xiangkui</au><au>Cho, Jiung</au><au>Choi, Miri</au><au>Byong Sun Chun</au><au>Cormac Ó Coileáin</au><au>Hong-Jun, Xu</au><au>Wang, Zhi</au><au>Jiang, Zhaotan</au><au>Ching-Ray, Chang</au><au>Han-Chun, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-enhanced gas sensing of SnS2 with nanoscale defects</atitle><jtitle>RSC advances</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>626</spage><epage>635</epage><pages>626-635</pages><eissn>2046-2069</eissn><abstract>Recently a SnS2 based NO2 gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS2 grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the performance of a NO2 gas sensor based on SnS2 with nanoscale defects by photon illumination, and a detection limit of 2.5 ppb is achieved at room temperature. Using a classical Langmuir model and density functional theory simulations, we show S vacancies work as additional adsorption sites with fast adsorption times, higher adsorption energies, and an order of magnitude higher resistance change compared with pristine SnS2. More interestingly, when electron–hole pairs are excited by photon illumination, the average adsorption time first increases and then decreases with NO2 concentration, while the average desorption time always decreases with NO2 concentration. Our results give a deep understanding of photo-enhanced gas sensing of SnS2 with nanoscale defects, and thus open an interesting window for the design of high performance gas sensing devices based on 2D materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35517585</pmid><doi>10.1039/c8ra08857h</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2019-01, Vol.9 (2), p.626-635
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059496
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Adsorption
Chemical vapor deposition
Chemistry
Computer simulation
Defects
Density functional theory
Design defects
Detection
Gas sensors
Illumination
Nitrogen dioxide
Organic chemistry
Tin disulfide
title Photo-enhanced gas sensing of SnS2 with nanoscale defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-enhanced%20gas%20sensing%20of%20SnS2%20with%20nanoscale%20defects&rft.jtitle=RSC%20advances&rft.au=Wen-Jie,%20Yan&rft.date=2019-01-02&rft.volume=9&rft.issue=2&rft.spage=626&rft.epage=635&rft.pages=626-635&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra08857h&rft_dat=%3Cproquest_pubme%3E2166100760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166100760&rft_id=info:pmid/35517585&rfr_iscdi=true