Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe

In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-12, Vol.10 (73), p.44785-44792
Hauptverfasser: Nguyen, Hong T T, Vo, T T, Vu, Tuan V, Hieu, Nguyen V, Lu, Dung V, Rai, D P, Binh, Nguyen T T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44792
container_issue 73
container_start_page 44785
container_title RSC advances
container_volume 10
creator Nguyen, Hong T T
Vo, T T
Vu, Tuan V
Hieu, Nguyen V
Lu, Dung V
Rai, D P
Binh, Nguyen T T
description In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.
doi_str_mv 10.1039/d0ra08279a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9058616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2472036515</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-5f8c4e2f7c3192aef6cd76f4d83260bb590c16a84403ac422b5a331a94d7b9283</originalsourceid><addsrcrecordid>eNpdkM9KAzEYxIMottRefIKAFw9dzf_dvQhStCoFD9VzyGaTNmWbrMmu4M138A19EhfagzqXb2CGH8wHwDlGVxjR8rpGUaGC5KU6AmOCmMgIEuXxLz8C05S2aJDgmAh8CkaUcywIQ2NQrVrnvz-_QqxcB3Xo28b5NTTWGt3B4KFpBhODd3oGQ9s5rZoZVL6G3cbEXdjHTsM2htbEzpkEg4VPyvcJLhRZrcwZOLGqSWZ6uBPwen_3Mn_Ils-Lx_ntMmspyruM20IzQ2yuKS6JMlboOheW1QUlAlUVL5HGQhWMIao0I6TiilKsSlbnVUkKOgE3e27bVztTa-O7qBrZRrdT8UMG5eTfxLuNXId3WSJeCCwGwOUBEMNbb1Indy5p0zTKm9AnSYTAqGAF40P14l91G_roh3mSsJwgOrya0x8YTX8H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472036515</pqid></control><display><type>article</type><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</creator><creatorcontrib>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</creatorcontrib><description>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra08279a</identifier><identifier>PMID: 35516240</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Boltzmann transport equation ; Chemistry ; Coupling (molecular) ; Density functional theory ; Electron spin ; Electron transport ; Energy gap ; Figure of merit ; Mathematical analysis ; Molecular dynamics ; Optical properties ; Optoelectronic devices ; Physical properties ; Room temperature ; Spin-orbit interactions ; Splitting ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Valence band</subject><ispartof>RSC advances, 2020-12, Vol.10 (73), p.44785-44792</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nguyen, Hong T T</creatorcontrib><creatorcontrib>Vo, T T</creatorcontrib><creatorcontrib>Vu, Tuan V</creatorcontrib><creatorcontrib>Hieu, Nguyen V</creatorcontrib><creatorcontrib>Lu, Dung V</creatorcontrib><creatorcontrib>Rai, D P</creatorcontrib><creatorcontrib>Binh, Nguyen T T</creatorcontrib><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><title>RSC advances</title><description>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</description><subject>Boltzmann transport equation</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Electron spin</subject><subject>Electron transport</subject><subject>Energy gap</subject><subject>Figure of merit</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Spin-orbit interactions</subject><subject>Splitting</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Valence band</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM9KAzEYxIMottRefIKAFw9dzf_dvQhStCoFD9VzyGaTNmWbrMmu4M138A19EhfagzqXb2CGH8wHwDlGVxjR8rpGUaGC5KU6AmOCmMgIEuXxLz8C05S2aJDgmAh8CkaUcywIQ2NQrVrnvz-_QqxcB3Xo28b5NTTWGt3B4KFpBhODd3oGQ9s5rZoZVL6G3cbEXdjHTsM2htbEzpkEg4VPyvcJLhRZrcwZOLGqSWZ6uBPwen_3Mn_Ils-Lx_ntMmspyruM20IzQ2yuKS6JMlboOheW1QUlAlUVL5HGQhWMIao0I6TiilKsSlbnVUkKOgE3e27bVztTa-O7qBrZRrdT8UMG5eTfxLuNXId3WSJeCCwGwOUBEMNbb1Indy5p0zTKm9AnSYTAqGAF40P14l91G_roh3mSsJwgOrya0x8YTX8H</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Nguyen, Hong T T</creator><creator>Vo, T T</creator><creator>Vu, Tuan V</creator><creator>Hieu, Nguyen V</creator><creator>Lu, Dung V</creator><creator>Rai, D P</creator><creator>Binh, Nguyen T T</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201217</creationdate><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><author>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-5f8c4e2f7c3192aef6cd76f4d83260bb590c16a84403ac422b5a331a94d7b9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann transport equation</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Electron spin</topic><topic>Electron transport</topic><topic>Energy gap</topic><topic>Figure of merit</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Spin-orbit interactions</topic><topic>Splitting</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hong T T</creatorcontrib><creatorcontrib>Vo, T T</creatorcontrib><creatorcontrib>Vu, Tuan V</creatorcontrib><creatorcontrib>Hieu, Nguyen V</creatorcontrib><creatorcontrib>Lu, Dung V</creatorcontrib><creatorcontrib>Rai, D P</creatorcontrib><creatorcontrib>Binh, Nguyen T T</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hong T T</au><au>Vo, T T</au><au>Vu, Tuan V</au><au>Hieu, Nguyen V</au><au>Lu, Dung V</au><au>Rai, D P</au><au>Binh, Nguyen T T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</atitle><jtitle>RSC advances</jtitle><date>2020-12-17</date><risdate>2020</risdate><volume>10</volume><issue>73</issue><spage>44785</spage><epage>44792</epage><pages>44785-44792</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35516240</pmid><doi>10.1039/d0ra08279a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-12, Vol.10 (73), p.44785-44792
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9058616
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Boltzmann transport equation
Chemistry
Coupling (molecular)
Density functional theory
Electron spin
Electron transport
Energy gap
Figure of merit
Mathematical analysis
Molecular dynamics
Optical properties
Optoelectronic devices
Physical properties
Room temperature
Spin-orbit interactions
Splitting
Thermal conductivity
Thermoelectricity
Transport properties
Valence band
title Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%E2%80%93orbit%20coupling%20effect%20on%20electronic,%20optical,%20and%20thermoelectric%20properties%20of%20Janus%20Ga2SSe&rft.jtitle=RSC%20advances&rft.au=Nguyen,%20Hong%20T%20T&rft.date=2020-12-17&rft.volume=10&rft.issue=73&rft.spage=44785&rft.epage=44792&rft.pages=44785-44792&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra08279a&rft_dat=%3Cproquest_pubme%3E2472036515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472036515&rft_id=info:pmid/35516240&rfr_iscdi=true