Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe
In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demons...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-12, Vol.10 (73), p.44785-44792 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44792 |
---|---|
container_issue | 73 |
container_start_page | 44785 |
container_title | RSC advances |
container_volume | 10 |
creator | Nguyen, Hong T T Vo, T T Vu, Tuan V Hieu, Nguyen V Lu, Dung V Rai, D P Binh, Nguyen T T |
description | In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices. |
doi_str_mv | 10.1039/d0ra08279a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9058616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2472036515</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-5f8c4e2f7c3192aef6cd76f4d83260bb590c16a84403ac422b5a331a94d7b9283</originalsourceid><addsrcrecordid>eNpdkM9KAzEYxIMottRefIKAFw9dzf_dvQhStCoFD9VzyGaTNmWbrMmu4M138A19EhfagzqXb2CGH8wHwDlGVxjR8rpGUaGC5KU6AmOCmMgIEuXxLz8C05S2aJDgmAh8CkaUcywIQ2NQrVrnvz-_QqxcB3Xo28b5NTTWGt3B4KFpBhODd3oGQ9s5rZoZVL6G3cbEXdjHTsM2htbEzpkEg4VPyvcJLhRZrcwZOLGqSWZ6uBPwen_3Mn_Ils-Lx_ntMmspyruM20IzQ2yuKS6JMlboOheW1QUlAlUVL5HGQhWMIao0I6TiilKsSlbnVUkKOgE3e27bVztTa-O7qBrZRrdT8UMG5eTfxLuNXId3WSJeCCwGwOUBEMNbb1Indy5p0zTKm9AnSYTAqGAF40P14l91G_roh3mSsJwgOrya0x8YTX8H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472036515</pqid></control><display><type>article</type><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</creator><creatorcontrib>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</creatorcontrib><description>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra08279a</identifier><identifier>PMID: 35516240</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Boltzmann transport equation ; Chemistry ; Coupling (molecular) ; Density functional theory ; Electron spin ; Electron transport ; Energy gap ; Figure of merit ; Mathematical analysis ; Molecular dynamics ; Optical properties ; Optoelectronic devices ; Physical properties ; Room temperature ; Spin-orbit interactions ; Splitting ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Valence band</subject><ispartof>RSC advances, 2020-12, Vol.10 (73), p.44785-44792</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nguyen, Hong T T</creatorcontrib><creatorcontrib>Vo, T T</creatorcontrib><creatorcontrib>Vu, Tuan V</creatorcontrib><creatorcontrib>Hieu, Nguyen V</creatorcontrib><creatorcontrib>Lu, Dung V</creatorcontrib><creatorcontrib>Rai, D P</creatorcontrib><creatorcontrib>Binh, Nguyen T T</creatorcontrib><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><title>RSC advances</title><description>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</description><subject>Boltzmann transport equation</subject><subject>Chemistry</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Electron spin</subject><subject>Electron transport</subject><subject>Energy gap</subject><subject>Figure of merit</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Spin-orbit interactions</subject><subject>Splitting</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Valence band</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM9KAzEYxIMottRefIKAFw9dzf_dvQhStCoFD9VzyGaTNmWbrMmu4M138A19EhfagzqXb2CGH8wHwDlGVxjR8rpGUaGC5KU6AmOCmMgIEuXxLz8C05S2aJDgmAh8CkaUcywIQ2NQrVrnvz-_QqxcB3Xo28b5NTTWGt3B4KFpBhODd3oGQ9s5rZoZVL6G3cbEXdjHTsM2htbEzpkEg4VPyvcJLhRZrcwZOLGqSWZ6uBPwen_3Mn_Ils-Lx_ntMmspyruM20IzQ2yuKS6JMlboOheW1QUlAlUVL5HGQhWMIao0I6TiilKsSlbnVUkKOgE3e27bVztTa-O7qBrZRrdT8UMG5eTfxLuNXId3WSJeCCwGwOUBEMNbb1Indy5p0zTKm9AnSYTAqGAF40P14l91G_roh3mSsJwgOrya0x8YTX8H</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Nguyen, Hong T T</creator><creator>Vo, T T</creator><creator>Vu, Tuan V</creator><creator>Hieu, Nguyen V</creator><creator>Lu, Dung V</creator><creator>Rai, D P</creator><creator>Binh, Nguyen T T</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201217</creationdate><title>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</title><author>Nguyen, Hong T T ; Vo, T T ; Vu, Tuan V ; Hieu, Nguyen V ; Lu, Dung V ; Rai, D P ; Binh, Nguyen T T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-5f8c4e2f7c3192aef6cd76f4d83260bb590c16a84403ac422b5a331a94d7b9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann transport equation</topic><topic>Chemistry</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Electron spin</topic><topic>Electron transport</topic><topic>Energy gap</topic><topic>Figure of merit</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Spin-orbit interactions</topic><topic>Splitting</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hong T T</creatorcontrib><creatorcontrib>Vo, T T</creatorcontrib><creatorcontrib>Vu, Tuan V</creatorcontrib><creatorcontrib>Hieu, Nguyen V</creatorcontrib><creatorcontrib>Lu, Dung V</creatorcontrib><creatorcontrib>Rai, D P</creatorcontrib><creatorcontrib>Binh, Nguyen T T</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hong T T</au><au>Vo, T T</au><au>Vu, Tuan V</au><au>Hieu, Nguyen V</au><au>Lu, Dung V</au><au>Rai, D P</au><au>Binh, Nguyen T T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe</atitle><jtitle>RSC advances</jtitle><date>2020-12-17</date><risdate>2020</risdate><volume>10</volume><issue>73</issue><spage>44785</spage><epage>44792</epage><pages>44785-44792</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>In this paper, we investigate the electronic, optical, and thermoelectric properties of Ga2SSe monolayer by using density functional theory. Via analysis of the phonon spectrum and ab initio molecular dynamics simulations, Ga2SSe is confirmed to be stable at room temperature. Our calculations demonstrate that Ga2SSe exhibits indirect semiconductor characteristics and the spin–orbit coupling (SOC) effect has slightly reduced its band gap. Besides, the band gap of Ga2SSe depends tightly on the biaxial strain. When the SOC effect is included, small spin–orbit splitting energy of 90 meV has been found in the valence band. However, the spin–orbit splitting energy dramatically changes in the presence of biaxial strain. Ga2SSe exhibits high optical absorption intensity in the near-ultraviolet region, up to 8.444 × 104 cm−1, which is needed for applications in optoelectronic devices. By using the Boltzmann transport equations, the electronic transport coefficients of Ga2SSe are comprehensively investigated. Our calculations reveal that Ga2SSe exhibits a very low lattice thermal conductivity and high figure of merit ZT and we can enhance its ZT by temperature. Our findings provide further insight into the physical properties of Ga2SSe as well as point to prospects for its application in next-generation high-performance devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35516240</pmid><doi>10.1039/d0ra08279a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-12, Vol.10 (73), p.44785-44792 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9058616 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Boltzmann transport equation Chemistry Coupling (molecular) Density functional theory Electron spin Electron transport Energy gap Figure of merit Mathematical analysis Molecular dynamics Optical properties Optoelectronic devices Physical properties Room temperature Spin-orbit interactions Splitting Thermal conductivity Thermoelectricity Transport properties Valence band |
title | Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga2SSe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%E2%80%93orbit%20coupling%20effect%20on%20electronic,%20optical,%20and%20thermoelectric%20properties%20of%20Janus%20Ga2SSe&rft.jtitle=RSC%20advances&rft.au=Nguyen,%20Hong%20T%20T&rft.date=2020-12-17&rft.volume=10&rft.issue=73&rft.spage=44785&rft.epage=44792&rft.pages=44785-44792&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra08279a&rft_dat=%3Cproquest_pubme%3E2472036515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472036515&rft_id=info:pmid/35516240&rfr_iscdi=true |