Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia

Objectives Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell proliferation 2022-04, Vol.55 (4), p.e13199-n/a
Hauptverfasser: Pal, Rajesh, Kowalik, Marta Anna, Serra, Marina, Migliore, Cristina, Giordano, Silvia, Columbano, Amedeo, Perra, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e13199
container_title Cell proliferation
container_volume 55
creator Pal, Rajesh
Kowalik, Marta Anna
Serra, Marina
Migliore, Cristina
Giordano, Silvia
Columbano, Amedeo
Perra, Andrea
description Objectives Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown. Materials and methods Next generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CD‐1 mice livers 1, 3 and 6 h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNA‐mRNA networks. Results Following PH or TCPOBOP we identified 810 and 527 genes, and 102 and 10 miRNAs, respectively, differentially expressed. Only 20 genes and 8 microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miR‐106b‐5p, were downregulated. Conclusions While miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP. A balance of pro‐ and anti‐proliferative signals is regulated by miRs in the priming phase of hepatocytes following pH‐induced liver regeneration, while miR deregulation leads only to pro‐proliferative signals in primary hyperplasia. This justifies the more rapid entry of hepatocytes into the cell cycle after TCPOBOP treatment.
doi_str_mv 10.1111/cpr.13199
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9055901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629858985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-9e36be16876b8ef23c9c807127107ccf17e7d46d88c4d02f041e5395086543f23</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EosPAghdAltjAIq0d_8UbpGr4q9QWVMHa8jg3My6Jk9pJq9nxCDwjT4LTKRUgYcm6lu7no3vuQeg5JYc0nyM3xEPKqNYP0IIyKYqSVvwhWhAtSaFUWR6gJyldEpIhJR-jAyao4kKoBYpv_TXEBPjMu9hfnB-nn99_dLniAONNH78lHGEztXYEPG4BD9F3PmzwsLX5U9_grp_yo51VZhICRDv6PmAb6rlf-whuxNvdAHFobfL2KXrU2DbBs7u6RF_fv_uy-licfvpwsjo-LRznTBcamFwDlZWS6wqakjntKqJoqShRzjVUgaq5rKvK8ZqUDeEUBNOCVFJwlvklerPXHaZ1B7WDMEbbmtmBjTvTW2_-7gS_NZv-2mgihM67WqJXdwKxv5ogjabzyUHb2gDZtSllqStR5ZvRl_-gl_0UQ7aXKaFKrShnmXq9p_KqU4rQ3A9DiZmTNDlJc5tkZl_8Of09-Tu6DBztgRvfwu7_Smb1-WIv-QtckKn6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657297143</pqid></control><display><type>article</type><title>Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Pal, Rajesh ; Kowalik, Marta Anna ; Serra, Marina ; Migliore, Cristina ; Giordano, Silvia ; Columbano, Amedeo ; Perra, Andrea</creator><creatorcontrib>Pal, Rajesh ; Kowalik, Marta Anna ; Serra, Marina ; Migliore, Cristina ; Giordano, Silvia ; Columbano, Amedeo ; Perra, Andrea</creatorcontrib><description>Objectives Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown. Materials and methods Next generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CD‐1 mice livers 1, 3 and 6 h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNA‐mRNA networks. Results Following PH or TCPOBOP we identified 810 and 527 genes, and 102 and 10 miRNAs, respectively, differentially expressed. Only 20 genes and 8 microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miR‐106b‐5p, were downregulated. Conclusions While miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP. A balance of pro‐ and anti‐proliferative signals is regulated by miRs in the priming phase of hepatocytes following pH‐induced liver regeneration, while miR deregulation leads only to pro‐proliferative signals in primary hyperplasia. This justifies the more rapid entry of hepatocytes into the cell cycle after TCPOBOP treatment.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.13199</identifier><identifier>PMID: 35174557</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Binding sites ; Cell cycle ; Cyclin D1 ; Deregulation ; Experiments ; Gene expression ; Genes ; Genomes ; Hepatectomy ; Hepatocytes ; Hepatocytes - metabolism ; hepatomitogens ; Histology ; Hyperplasia ; Hyperplasia - pathology ; Laboratory animals ; Liver ; Liver - pathology ; Liver Regeneration - genetics ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; MiRNAs ; Next-generation sequencing ; Original ; partial hepatectomy ; Priming ; Quality control ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Regeneration ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; S phase ; transcriptomics</subject><ispartof>Cell proliferation, 2022-04, Vol.55 (4), p.e13199-n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Cell Proliferation published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-9e36be16876b8ef23c9c807127107ccf17e7d46d88c4d02f041e5395086543f23</citedby><cites>FETCH-LOGICAL-c4439-9e36be16876b8ef23c9c807127107ccf17e7d46d88c4d02f041e5395086543f23</cites><orcidid>0000-0002-6956-9030 ; 0000-0003-1854-1086 ; 0000-0003-3722-2814 ; 0000-0002-8098-899X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055901/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055901/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35174557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, Rajesh</creatorcontrib><creatorcontrib>Kowalik, Marta Anna</creatorcontrib><creatorcontrib>Serra, Marina</creatorcontrib><creatorcontrib>Migliore, Cristina</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Columbano, Amedeo</creatorcontrib><creatorcontrib>Perra, Andrea</creatorcontrib><title>Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Objectives Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown. Materials and methods Next generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CD‐1 mice livers 1, 3 and 6 h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNA‐mRNA networks. Results Following PH or TCPOBOP we identified 810 and 527 genes, and 102 and 10 miRNAs, respectively, differentially expressed. Only 20 genes and 8 microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miR‐106b‐5p, were downregulated. Conclusions While miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP. A balance of pro‐ and anti‐proliferative signals is regulated by miRs in the priming phase of hepatocytes following pH‐induced liver regeneration, while miR deregulation leads only to pro‐proliferative signals in primary hyperplasia. This justifies the more rapid entry of hepatocytes into the cell cycle after TCPOBOP treatment.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Cell cycle</subject><subject>Cyclin D1</subject><subject>Deregulation</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hepatectomy</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>hepatomitogens</subject><subject>Histology</subject><subject>Hyperplasia</subject><subject>Hyperplasia - pathology</subject><subject>Laboratory animals</subject><subject>Liver</subject><subject>Liver - pathology</subject><subject>Liver Regeneration - genetics</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>MiRNAs</subject><subject>Next-generation sequencing</subject><subject>Original</subject><subject>partial hepatectomy</subject><subject>Priming</subject><subject>Quality control</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Regeneration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>S phase</subject><subject>transcriptomics</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1u1DAUhS0EosPAghdAltjAIq0d_8UbpGr4q9QWVMHa8jg3My6Jk9pJq9nxCDwjT4LTKRUgYcm6lu7no3vuQeg5JYc0nyM3xEPKqNYP0IIyKYqSVvwhWhAtSaFUWR6gJyldEpIhJR-jAyao4kKoBYpv_TXEBPjMu9hfnB-nn99_dLniAONNH78lHGEztXYEPG4BD9F3PmzwsLX5U9_grp_yo51VZhICRDv6PmAb6rlf-whuxNvdAHFobfL2KXrU2DbBs7u6RF_fv_uy-licfvpwsjo-LRznTBcamFwDlZWS6wqakjntKqJoqShRzjVUgaq5rKvK8ZqUDeEUBNOCVFJwlvklerPXHaZ1B7WDMEbbmtmBjTvTW2_-7gS_NZv-2mgihM67WqJXdwKxv5ogjabzyUHb2gDZtSllqStR5ZvRl_-gl_0UQ7aXKaFKrShnmXq9p_KqU4rQ3A9DiZmTNDlJc5tkZl_8Of09-Tu6DBztgRvfwu7_Smb1-WIv-QtckKn6</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Pal, Rajesh</creator><creator>Kowalik, Marta Anna</creator><creator>Serra, Marina</creator><creator>Migliore, Cristina</creator><creator>Giordano, Silvia</creator><creator>Columbano, Amedeo</creator><creator>Perra, Andrea</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6956-9030</orcidid><orcidid>https://orcid.org/0000-0003-1854-1086</orcidid><orcidid>https://orcid.org/0000-0003-3722-2814</orcidid><orcidid>https://orcid.org/0000-0002-8098-899X</orcidid></search><sort><creationdate>202204</creationdate><title>Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia</title><author>Pal, Rajesh ; Kowalik, Marta Anna ; Serra, Marina ; Migliore, Cristina ; Giordano, Silvia ; Columbano, Amedeo ; Perra, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-9e36be16876b8ef23c9c807127107ccf17e7d46d88c4d02f041e5395086543f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Cell cycle</topic><topic>Cyclin D1</topic><topic>Deregulation</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hepatectomy</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>hepatomitogens</topic><topic>Histology</topic><topic>Hyperplasia</topic><topic>Hyperplasia - pathology</topic><topic>Laboratory animals</topic><topic>Liver</topic><topic>Liver - pathology</topic><topic>Liver Regeneration - genetics</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>MiRNAs</topic><topic>Next-generation sequencing</topic><topic>Original</topic><topic>partial hepatectomy</topic><topic>Priming</topic><topic>Quality control</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Regeneration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>S phase</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Rajesh</creatorcontrib><creatorcontrib>Kowalik, Marta Anna</creatorcontrib><creatorcontrib>Serra, Marina</creatorcontrib><creatorcontrib>Migliore, Cristina</creatorcontrib><creatorcontrib>Giordano, Silvia</creatorcontrib><creatorcontrib>Columbano, Amedeo</creatorcontrib><creatorcontrib>Perra, Andrea</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Rajesh</au><au>Kowalik, Marta Anna</au><au>Serra, Marina</au><au>Migliore, Cristina</au><au>Giordano, Silvia</au><au>Columbano, Amedeo</au><au>Perra, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2022-04</date><risdate>2022</risdate><volume>55</volume><issue>4</issue><spage>e13199</spage><epage>n/a</epage><pages>e13199-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Objectives Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown. Materials and methods Next generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CD‐1 mice livers 1, 3 and 6 h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNA‐mRNA networks. Results Following PH or TCPOBOP we identified 810 and 527 genes, and 102 and 10 miRNAs, respectively, differentially expressed. Only 20 genes and 8 microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miR‐106b‐5p, were downregulated. Conclusions While miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP. A balance of pro‐ and anti‐proliferative signals is regulated by miRs in the priming phase of hepatocytes following pH‐induced liver regeneration, while miR deregulation leads only to pro‐proliferative signals in primary hyperplasia. This justifies the more rapid entry of hepatocytes into the cell cycle after TCPOBOP treatment.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35174557</pmid><doi>10.1111/cpr.13199</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6956-9030</orcidid><orcidid>https://orcid.org/0000-0003-1854-1086</orcidid><orcidid>https://orcid.org/0000-0003-3722-2814</orcidid><orcidid>https://orcid.org/0000-0002-8098-899X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7722
ispartof Cell proliferation, 2022-04, Vol.55 (4), p.e13199-n/a
issn 0960-7722
1365-2184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9055901
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animals
Binding sites
Cell cycle
Cyclin D1
Deregulation
Experiments
Gene expression
Genes
Genomes
Hepatectomy
Hepatocytes
Hepatocytes - metabolism
hepatomitogens
Histology
Hyperplasia
Hyperplasia - pathology
Laboratory animals
Liver
Liver - pathology
Liver Regeneration - genetics
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
MiRNAs
Next-generation sequencing
Original
partial hepatectomy
Priming
Quality control
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
Regeneration
Ribonucleic acid
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
S phase
transcriptomics
title Diverse MicroRNAs‐mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20MicroRNAs%E2%80%90mRNA%20networks%20regulate%20the%20priming%20phase%20of%20mouse%20liver%20regeneration%20and%20of%20direct%20hyperplasia&rft.jtitle=Cell%20proliferation&rft.au=Pal,%20Rajesh&rft.date=2022-04&rft.volume=55&rft.issue=4&rft.spage=e13199&rft.epage=n/a&rft.pages=e13199-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.13199&rft_dat=%3Cproquest_pubme%3E2629858985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657297143&rft_id=info:pmid/35174557&rfr_iscdi=true