Enzyme encapsulation by protein cages
Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be deg...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-04, Vol.1 (22), p.13293-1331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 22 |
container_start_page | 13293 |
container_title | RSC advances |
container_volume | 1 |
creator | Chakraborti, Soumyananda Lin, Ting-Yu Glatt, Sebastian Heddle, Jonathan G |
description | Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for
in vivo
diagnostic and therapeutic use as well as for
ex vivo
applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Protein cages are useful nanometric containers which can capture and encapsulate enzymes
via
several different approaches. |
doi_str_mv | 10.1039/c9ra10983h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9051456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658651030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-1826d52538dafe50f7a103fd6145947f02015b5f5da3e26bad2bc639d9cdc33a3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVmo37pUREUSo5jFJJxuhlGqFgiC6Dpk82inzMpkR6q83tbVWF2aTwP04OfccAE4QvEGQ8FvFnUSQJ2S-B44wjFkfQ8b3d94d0PN-AcNhFGGGDkGH0JhjhOERuByXH8vCRKZUsvZtLpusKqN0GdWuakxWRkrOjD8GB1bm3vQ2dxe83o9fRpP-9OnhcTSc9lVM46aPEsw0xZQkWlpDoR0Ea8RqhmLK44GFGCKaUku1JAazVGqcKka45korQiTpgru1bt2mhdHKlI2TuahdVki3FJXMxO9Jmc3FrHoXHNLwBwsCVxsBV721xjeiyLwyeS5LU7VeYEaTkAIkMKAXf9BF1boyrCcwSUI8A4RW1PWaUq7y3hm7NYOgWBUgRvx5-FXAJMBnu_a36HfcAThfA86r7fSnQVFrG5jT_xjyCemylKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389217110</pqid></control><display><type>article</type><title>Enzyme encapsulation by protein cages</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Chakraborti, Soumyananda ; Lin, Ting-Yu ; Glatt, Sebastian ; Heddle, Jonathan G</creator><creatorcontrib>Chakraborti, Soumyananda ; Lin, Ting-Yu ; Glatt, Sebastian ; Heddle, Jonathan G</creatorcontrib><description>Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for
in vivo
diagnostic and therapeutic use as well as for
ex vivo
applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Protein cages are useful nanometric containers which can capture and encapsulate enzymes
via
several different approaches.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra10983h</identifier><identifier>PMID: 35492120</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cages ; Chemistry ; Diagnostic systems ; Encapsulation ; Enzymes ; Macromolecules ; Proteins</subject><ispartof>RSC advances, 2020-04, Vol.1 (22), p.13293-1331</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-1826d52538dafe50f7a103fd6145947f02015b5f5da3e26bad2bc639d9cdc33a3</citedby><cites>FETCH-LOGICAL-c454t-1826d52538dafe50f7a103fd6145947f02015b5f5da3e26bad2bc639d9cdc33a3</cites><orcidid>0000-0003-2815-7133 ; 0000-0003-0994-9928 ; 0000-0002-7384-690X ; 0000-0001-7914-2164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051456/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051456/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Heddle, Jonathan G</creatorcontrib><title>Enzyme encapsulation by protein cages</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for
in vivo
diagnostic and therapeutic use as well as for
ex vivo
applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Protein cages are useful nanometric containers which can capture and encapsulate enzymes
via
several different approaches.</description><subject>Cages</subject><subject>Chemistry</subject><subject>Diagnostic systems</subject><subject>Encapsulation</subject><subject>Enzymes</subject><subject>Macromolecules</subject><subject>Proteins</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoVmo37pUREUSo5jFJJxuhlGqFgiC6Dpk82inzMpkR6q83tbVWF2aTwP04OfccAE4QvEGQ8FvFnUSQJ2S-B44wjFkfQ8b3d94d0PN-AcNhFGGGDkGH0JhjhOERuByXH8vCRKZUsvZtLpusKqN0GdWuakxWRkrOjD8GB1bm3vQ2dxe83o9fRpP-9OnhcTSc9lVM46aPEsw0xZQkWlpDoR0Ea8RqhmLK44GFGCKaUku1JAazVGqcKka45korQiTpgru1bt2mhdHKlI2TuahdVki3FJXMxO9Jmc3FrHoXHNLwBwsCVxsBV721xjeiyLwyeS5LU7VeYEaTkAIkMKAXf9BF1boyrCcwSUI8A4RW1PWaUq7y3hm7NYOgWBUgRvx5-FXAJMBnu_a36HfcAThfA86r7fSnQVFrG5jT_xjyCemylKs</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chakraborti, Soumyananda</creator><creator>Lin, Ting-Yu</creator><creator>Glatt, Sebastian</creator><creator>Heddle, Jonathan G</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2815-7133</orcidid><orcidid>https://orcid.org/0000-0003-0994-9928</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0001-7914-2164</orcidid></search><sort><creationdate>20200401</creationdate><title>Enzyme encapsulation by protein cages</title><author>Chakraborti, Soumyananda ; Lin, Ting-Yu ; Glatt, Sebastian ; Heddle, Jonathan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-1826d52538dafe50f7a103fd6145947f02015b5f5da3e26bad2bc639d9cdc33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cages</topic><topic>Chemistry</topic><topic>Diagnostic systems</topic><topic>Encapsulation</topic><topic>Enzymes</topic><topic>Macromolecules</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Heddle, Jonathan G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Soumyananda</au><au>Lin, Ting-Yu</au><au>Glatt, Sebastian</au><au>Heddle, Jonathan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme encapsulation by protein cages</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>1</volume><issue>22</issue><spage>13293</spage><epage>1331</epage><pages>13293-1331</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for
in vivo
diagnostic and therapeutic use as well as for
ex vivo
applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Protein cages are useful nanometric containers which can capture and encapsulate enzymes
via
several different approaches.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492120</pmid><doi>10.1039/c9ra10983h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2815-7133</orcidid><orcidid>https://orcid.org/0000-0003-0994-9928</orcidid><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><orcidid>https://orcid.org/0000-0001-7914-2164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-04, Vol.1 (22), p.13293-1331 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9051456 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Cages Chemistry Diagnostic systems Encapsulation Enzymes Macromolecules Proteins |
title | Enzyme encapsulation by protein cages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20encapsulation%20by%20protein%20cages&rft.jtitle=RSC%20advances&rft.au=Chakraborti,%20Soumyananda&rft.date=2020-04-01&rft.volume=1&rft.issue=22&rft.spage=13293&rft.epage=1331&rft.pages=13293-1331&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra10983h&rft_dat=%3Cproquest_pubme%3E2658651030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389217110&rft_id=info:pmid/35492120&rfr_iscdi=true |