Traveling waves of an FKPP-type model for self-organized growth
We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2022-05, Vol.84 (6), p.42, Article 42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 42 |
container_title | Journal of mathematical biology |
container_volume | 84 |
creator | Kreten, Florian |
description | We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points. |
doi_str_mv | 10.1007/s00285-022-01753-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656452651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EgvL4ARYoEhs2BnucOPEGhCpeohIsYG05ySQEpXGx01bt12Mo7wUbj6U5c-07l5B9zo45Y-mJZwyyhDIAyniaCLpcIwMeC6A85nKdDJhggsqMwxbZ9v6ZvVGKb5ItkcQZMMUH5OzBmRm2TVdH83Dxka0i00WXt_f3tF9MMBrbEtuosi7y2FbUutp0zRLLqHZ23j_tko3KtB73PuoOeby8eBhe09Hd1c3wfESLGJKeCpmlmADmeQ4GJU8zVFKwtBK5BEApYlOprCrilGeq5EpxliqZl8FmjApA7JDTle5kmo-xLLDrnWn1xDVj4xbamkb_7nTNk67tTCuWsAxkEDj6EHD2ZYq-1-PGF9i2pkM79RpkIsMOBYiAHv5Bn-3UdcHeOxUn4eSBghVVOOu9w-rrM5zpt3z0Kh8d8tHv-ehlGDr4aeNr5DOQAIgV4EOrq9F9v_2P7CtqLZpp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656452651</pqid></control><display><type>article</type><title>Traveling waves of an FKPP-type model for self-organized growth</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kreten, Florian</creator><creatorcontrib>Kreten, Florian</creatorcontrib><description>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</description><identifier>ISSN: 0303-6812</identifier><identifier>ISSN: 1432-1416</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-022-01753-z</identifier><identifier>PMID: 35482091</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Boundary layers ; Computer Simulation ; Developmental biology ; Diffusion ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Simulation ; Steady state ; Traveling waves</subject><ispartof>Journal of mathematical biology, 2022-05, Vol.84 (6), p.42, Article 42</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</cites><orcidid>0000-0003-1938-2590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-022-01753-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-022-01753-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35482091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreten, Florian</creatorcontrib><title>Traveling waves of an FKPP-type model for self-organized growth</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</description><subject>Applications of Mathematics</subject><subject>Boundary layers</subject><subject>Computer Simulation</subject><subject>Developmental biology</subject><subject>Diffusion</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Simulation</subject><subject>Steady state</subject><subject>Traveling waves</subject><issn>0303-6812</issn><issn>1432-1416</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctOwzAQRS0EgvL4ARYoEhs2BnucOPEGhCpeohIsYG05ySQEpXGx01bt12Mo7wUbj6U5c-07l5B9zo45Y-mJZwyyhDIAyniaCLpcIwMeC6A85nKdDJhggsqMwxbZ9v6ZvVGKb5ItkcQZMMUH5OzBmRm2TVdH83Dxka0i00WXt_f3tF9MMBrbEtuosi7y2FbUutp0zRLLqHZ23j_tko3KtB73PuoOeby8eBhe09Hd1c3wfESLGJKeCpmlmADmeQ4GJU8zVFKwtBK5BEApYlOprCrilGeq5EpxliqZl8FmjApA7JDTle5kmo-xLLDrnWn1xDVj4xbamkb_7nTNk67tTCuWsAxkEDj6EHD2ZYq-1-PGF9i2pkM79RpkIsMOBYiAHv5Bn-3UdcHeOxUn4eSBghVVOOu9w-rrM5zpt3z0Kh8d8tHv-ehlGDr4aeNr5DOQAIgV4EOrq9F9v_2P7CtqLZpp</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kreten, Florian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1938-2590</orcidid></search><sort><creationdate>20220501</creationdate><title>Traveling waves of an FKPP-type model for self-organized growth</title><author>Kreten, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Boundary layers</topic><topic>Computer Simulation</topic><topic>Developmental biology</topic><topic>Diffusion</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Simulation</topic><topic>Steady state</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreten, Florian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreten, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling waves of an FKPP-type model for self-organized growth</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>84</volume><issue>6</issue><spage>42</spage><pages>42-</pages><artnum>42</artnum><issn>0303-6812</issn><issn>1432-1416</issn><eissn>1432-1416</eissn><abstract>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35482091</pmid><doi>10.1007/s00285-022-01753-z</doi><orcidid>https://orcid.org/0000-0003-1938-2590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2022-05, Vol.84 (6), p.42, Article 42 |
issn | 0303-6812 1432-1416 1432-1416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050826 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Boundary layers Computer Simulation Developmental biology Diffusion Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Biological Simulation Steady state Traveling waves |
title | Traveling waves of an FKPP-type model for self-organized growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20waves%20of%20an%20FKPP-type%20model%20for%20self-organized%20growth&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Kreten,%20Florian&rft.date=2022-05-01&rft.volume=84&rft.issue=6&rft.spage=42&rft.pages=42-&rft.artnum=42&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-022-01753-z&rft_dat=%3Cproquest_pubme%3E2656452651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656452651&rft_id=info:pmid/35482091&rfr_iscdi=true |