Traveling waves of an FKPP-type model for self-organized growth

We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2022-05, Vol.84 (6), p.42, Article 42
1. Verfasser: Kreten, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 42
container_title Journal of mathematical biology
container_volume 84
creator Kreten, Florian
description We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.
doi_str_mv 10.1007/s00285-022-01753-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656452651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EgvL4ARYoEhs2BnucOPEGhCpeohIsYG05ySQEpXGx01bt12Mo7wUbj6U5c-07l5B9zo45Y-mJZwyyhDIAyniaCLpcIwMeC6A85nKdDJhggsqMwxbZ9v6ZvVGKb5ItkcQZMMUH5OzBmRm2TVdH83Dxka0i00WXt_f3tF9MMBrbEtuosi7y2FbUutp0zRLLqHZ23j_tko3KtB73PuoOeby8eBhe09Hd1c3wfESLGJKeCpmlmADmeQ4GJU8zVFKwtBK5BEApYlOprCrilGeq5EpxliqZl8FmjApA7JDTle5kmo-xLLDrnWn1xDVj4xbamkb_7nTNk67tTCuWsAxkEDj6EHD2ZYq-1-PGF9i2pkM79RpkIsMOBYiAHv5Bn-3UdcHeOxUn4eSBghVVOOu9w-rrM5zpt3z0Kh8d8tHv-ehlGDr4aeNr5DOQAIgV4EOrq9F9v_2P7CtqLZpp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656452651</pqid></control><display><type>article</type><title>Traveling waves of an FKPP-type model for self-organized growth</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kreten, Florian</creator><creatorcontrib>Kreten, Florian</creatorcontrib><description>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</description><identifier>ISSN: 0303-6812</identifier><identifier>ISSN: 1432-1416</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-022-01753-z</identifier><identifier>PMID: 35482091</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Boundary layers ; Computer Simulation ; Developmental biology ; Diffusion ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Simulation ; Steady state ; Traveling waves</subject><ispartof>Journal of mathematical biology, 2022-05, Vol.84 (6), p.42, Article 42</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</cites><orcidid>0000-0003-1938-2590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-022-01753-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-022-01753-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35482091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreten, Florian</creatorcontrib><title>Traveling waves of an FKPP-type model for self-organized growth</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</description><subject>Applications of Mathematics</subject><subject>Boundary layers</subject><subject>Computer Simulation</subject><subject>Developmental biology</subject><subject>Diffusion</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Simulation</subject><subject>Steady state</subject><subject>Traveling waves</subject><issn>0303-6812</issn><issn>1432-1416</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctOwzAQRS0EgvL4ARYoEhs2BnucOPEGhCpeohIsYG05ySQEpXGx01bt12Mo7wUbj6U5c-07l5B9zo45Y-mJZwyyhDIAyniaCLpcIwMeC6A85nKdDJhggsqMwxbZ9v6ZvVGKb5ItkcQZMMUH5OzBmRm2TVdH83Dxka0i00WXt_f3tF9MMBrbEtuosi7y2FbUutp0zRLLqHZ23j_tko3KtB73PuoOeby8eBhe09Hd1c3wfESLGJKeCpmlmADmeQ4GJU8zVFKwtBK5BEApYlOprCrilGeq5EpxliqZl8FmjApA7JDTle5kmo-xLLDrnWn1xDVj4xbamkb_7nTNk67tTCuWsAxkEDj6EHD2ZYq-1-PGF9i2pkM79RpkIsMOBYiAHv5Bn-3UdcHeOxUn4eSBghVVOOu9w-rrM5zpt3z0Kh8d8tHv-ehlGDr4aeNr5DOQAIgV4EOrq9F9v_2P7CtqLZpp</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kreten, Florian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1938-2590</orcidid></search><sort><creationdate>20220501</creationdate><title>Traveling waves of an FKPP-type model for self-organized growth</title><author>Kreten, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-3687e52ebbb2ae6178e96307f3b622e634af98fc47189d19910796bd0074e9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Boundary layers</topic><topic>Computer Simulation</topic><topic>Developmental biology</topic><topic>Diffusion</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Simulation</topic><topic>Steady state</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreten, Florian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreten, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling waves of an FKPP-type model for self-organized growth</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>84</volume><issue>6</issue><spage>42</spage><pages>42-</pages><artnum>42</artnum><issn>0303-6812</issn><issn>1432-1416</issn><eissn>1432-1416</eissn><abstract>We consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35482091</pmid><doi>10.1007/s00285-022-01753-z</doi><orcidid>https://orcid.org/0000-0003-1938-2590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2022-05, Vol.84 (6), p.42, Article 42
issn 0303-6812
1432-1416
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050826
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Boundary layers
Computer Simulation
Developmental biology
Diffusion
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Models, Biological
Simulation
Steady state
Traveling waves
title Traveling waves of an FKPP-type model for self-organized growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20waves%20of%20an%20FKPP-type%20model%20for%20self-organized%20growth&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Kreten,%20Florian&rft.date=2022-05-01&rft.volume=84&rft.issue=6&rft.spage=42&rft.pages=42-&rft.artnum=42&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-022-01753-z&rft_dat=%3Cproquest_pubme%3E2656452651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656452651&rft_id=info:pmid/35482091&rfr_iscdi=true