Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome

Purpose To compare the prevalence, characteristics, drug treatment for delirium, and outcomes of patients with Natural Language Processing (NLP) diagnosed behavioral disturbance (NLP-Dx-BD) vs Confusion Assessment Method for intensive care unit (CAM-ICU) positivity. Methods In three combined medical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intensive care medicine 2022-05, Vol.48 (5), p.559-569
Hauptverfasser: Young, Marcus, Holmes, Natasha, Kishore, Kartik, Marhoon, Nada, Amjad, Sobia, Serpa-Neto, Ary, Bellomo, Rinaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 5
container_start_page 559
container_title Intensive care medicine
container_volume 48
creator Young, Marcus
Holmes, Natasha
Kishore, Kartik
Marhoon, Nada
Amjad, Sobia
Serpa-Neto, Ary
Bellomo, Rinaldo
description Purpose To compare the prevalence, characteristics, drug treatment for delirium, and outcomes of patients with Natural Language Processing (NLP) diagnosed behavioral disturbance (NLP-Dx-BD) vs Confusion Assessment Method for intensive care unit (CAM-ICU) positivity. Methods In three combined medical-surgical ICUs, we obtained data on demographics, treatment with antipsychotic medications, and outcomes. We applied NLP to caregiver progress notes to diagnose behavioral disturbance and analyzed simultaneous CAM-ICU. Results We assessed 2313 patients with a median lowest Richmond Agitation-Sedation Scale (RASS) score of − 2 (− 4.0 to − 1.0) and median highest RASS score of 1 (0 to 1). Overall, 1246 (53.9%) patients were NLP-Dx-BD positive (NLP-Dx-BD pos ) and 578 (25%) were CAM-ICU positive (CAM-ICU pos ). Among NLP-Dx-BD pos patients, 539 (43.3%) were also CAM-ICU pos . In contrast, among CAM-ICU pos patients, 539 (93.3%) were also NLP-Dx-BD pos . The use of antipsychotic medications was highest in patients in the CAM-ICU pos and NLP-Dx-BD pos group (24.3%) followed by the CAM-ICU neg and NLP-Dx-BD pos group (10.5%). In NLP-Dx-BD neg patients, antipsychotic medication use was lower at 5.1% for CAM-ICU pos and NLP-Dx-BD neg patients and 2.3% for CAM-ICU neg and NLP-Dx-BD neg patients (overall P  
doi_str_mv 10.1007/s00134-022-06650-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723892231</galeid><sourcerecordid>A723892231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-b92afc1250bd520c25eeacb1519ba162c07dbc091a44478dc16b6088f4bc233c3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEokPhD7BAltiwmBQ_8mSBVFW8pAo2sLYc5yZxldiD7QTRf9l_1JtOaSkaoSwi5X7nHOf6JMlLRk8YpeXbQCkTWUo5T2lR5DS9fJRsWCZ4yrioHicbKjKeZkXGj5JnIVwgXhY5e5ociVxwzqtqk1x9VXH2aiSjsv2seiA77zSEYGxPWqN66wK0pIFBLcatYGsCKhplNZAlEO1sNwfjLFEhoG4CG8kEcXAt6ZwncQBibAQbzAJEKw9ktia-wxxY1AhosyU7Fc2q04PySkfwmGF02BK3gB_VbkuUbdcApw2iGPbLxIFEDyreBK5jN0ftJniePOnUGODF7fs4-fHxw_ezz-n5t09fzk7PU53TOqZNzVWnGc9p0-acap4DKN2wnNWNYgXXtGwbTWumsiwrq1azoiloVXVZo7kQWhwn7_e-u7mZoNV4DFyP3HkzKf9bOmXkw4k1g-zdImua07ISaPDm1sC7nzOEKCcTNIx4E-DmIDleXFXVmI7o63_QCzd7i7-HVF5kGS9qfk_1uFdpbOcwV6-m8rTERtScC4ZUeoDqwQIe0lnoDH5-wJ8c4PFpYTL6oIDvBdq7EDx0dzthVK7FlfviSiyuvCmuvETRq7-3eSf501QExB4IOLI9-PsV_Mf2Gqdm_zI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656442692</pqid></control><display><type>article</type><title>Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Young, Marcus ; Holmes, Natasha ; Kishore, Kartik ; Marhoon, Nada ; Amjad, Sobia ; Serpa-Neto, Ary ; Bellomo, Rinaldo</creator><creatorcontrib>Young, Marcus ; Holmes, Natasha ; Kishore, Kartik ; Marhoon, Nada ; Amjad, Sobia ; Serpa-Neto, Ary ; Bellomo, Rinaldo</creatorcontrib><description>Purpose To compare the prevalence, characteristics, drug treatment for delirium, and outcomes of patients with Natural Language Processing (NLP) diagnosed behavioral disturbance (NLP-Dx-BD) vs Confusion Assessment Method for intensive care unit (CAM-ICU) positivity. Methods In three combined medical-surgical ICUs, we obtained data on demographics, treatment with antipsychotic medications, and outcomes. We applied NLP to caregiver progress notes to diagnose behavioral disturbance and analyzed simultaneous CAM-ICU. Results We assessed 2313 patients with a median lowest Richmond Agitation-Sedation Scale (RASS) score of − 2 (− 4.0 to − 1.0) and median highest RASS score of 1 (0 to 1). Overall, 1246 (53.9%) patients were NLP-Dx-BD positive (NLP-Dx-BD pos ) and 578 (25%) were CAM-ICU positive (CAM-ICU pos ). Among NLP-Dx-BD pos patients, 539 (43.3%) were also CAM-ICU pos . In contrast, among CAM-ICU pos patients, 539 (93.3%) were also NLP-Dx-BD pos . The use of antipsychotic medications was highest in patients in the CAM-ICU pos and NLP-Dx-BD pos group (24.3%) followed by the CAM-ICU neg and NLP-Dx-BD pos group (10.5%). In NLP-Dx-BD neg patients, antipsychotic medication use was lower at 5.1% for CAM-ICU pos and NLP-Dx-BD neg patients and 2.3% for CAM-ICU neg and NLP-Dx-BD neg patients (overall P  &lt; 0.001). Regardless of CAM-ICU status, after adjustment and on time-dependent Cox modelling, NLP-Dx-BD was associated with greater antipsychotic medication use. Finally, regardless of CAM-ICU status, NLP-Dx-BD pos patients had longer duration of ICU and hospital stay and greater hospital mortality (all P  &lt; 0.001). Conclusion More patients were NLP-Dx-BD positive than CAM-ICU positive. NLP-Dx-BD and CAM-ICU assessment describe partly overlapping populations. However, NLP-Dx-BD identifies more patients likely to receive antipsychotic medications. In the absence of NLP-Dx-BD, treatment with antipsychotic medications is rare.</description><identifier>ISSN: 0342-4642</identifier><identifier>ISSN: 1432-1238</identifier><identifier>EISSN: 1432-1238</identifier><identifier>DOI: 10.1007/s00134-022-06650-z</identifier><identifier>PMID: 35322288</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anesthesiology ; Antipsychotic Agents - therapeutic use ; Antipsychotic drugs ; Antipsychotics ; Care and treatment ; Computational linguistics ; Confusion ; Critical Care Medicine ; Delirium ; Delirium - diagnosis ; Delirium - drug therapy ; Delirium - epidemiology ; Demographics ; Emergency Medicine ; Hospital patients ; Humans ; Intensive ; Intensive care ; Intensive Care Units ; Language ; Language processing ; Medical colleges ; Medical diagnosis ; Medical research ; Medicine ; Medicine &amp; Public Health ; Medicine, Experimental ; Mental disorders ; Methods ; Natural language interfaces ; Natural Language Processing ; Original ; Pain Medicine ; Patient outcomes ; Patients ; Pediatrics ; Pneumology/Respiratory System ; Prevalence ; Psychotropic drugs ; Treatment Outcome</subject><ispartof>Intensive care medicine, 2022-05, Vol.48 (5), p.559-569</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-b92afc1250bd520c25eeacb1519ba162c07dbc091a44478dc16b6088f4bc233c3</citedby><cites>FETCH-LOGICAL-c509t-b92afc1250bd520c25eeacb1519ba162c07dbc091a44478dc16b6088f4bc233c3</cites><orcidid>0000-0002-1650-8939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00134-022-06650-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00134-022-06650-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35322288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Marcus</creatorcontrib><creatorcontrib>Holmes, Natasha</creatorcontrib><creatorcontrib>Kishore, Kartik</creatorcontrib><creatorcontrib>Marhoon, Nada</creatorcontrib><creatorcontrib>Amjad, Sobia</creatorcontrib><creatorcontrib>Serpa-Neto, Ary</creatorcontrib><creatorcontrib>Bellomo, Rinaldo</creatorcontrib><title>Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome</title><title>Intensive care medicine</title><addtitle>Intensive Care Med</addtitle><addtitle>Intensive Care Med</addtitle><description>Purpose To compare the prevalence, characteristics, drug treatment for delirium, and outcomes of patients with Natural Language Processing (NLP) diagnosed behavioral disturbance (NLP-Dx-BD) vs Confusion Assessment Method for intensive care unit (CAM-ICU) positivity. Methods In three combined medical-surgical ICUs, we obtained data on demographics, treatment with antipsychotic medications, and outcomes. We applied NLP to caregiver progress notes to diagnose behavioral disturbance and analyzed simultaneous CAM-ICU. Results We assessed 2313 patients with a median lowest Richmond Agitation-Sedation Scale (RASS) score of − 2 (− 4.0 to − 1.0) and median highest RASS score of 1 (0 to 1). Overall, 1246 (53.9%) patients were NLP-Dx-BD positive (NLP-Dx-BD pos ) and 578 (25%) were CAM-ICU positive (CAM-ICU pos ). Among NLP-Dx-BD pos patients, 539 (43.3%) were also CAM-ICU pos . In contrast, among CAM-ICU pos patients, 539 (93.3%) were also NLP-Dx-BD pos . The use of antipsychotic medications was highest in patients in the CAM-ICU pos and NLP-Dx-BD pos group (24.3%) followed by the CAM-ICU neg and NLP-Dx-BD pos group (10.5%). In NLP-Dx-BD neg patients, antipsychotic medication use was lower at 5.1% for CAM-ICU pos and NLP-Dx-BD neg patients and 2.3% for CAM-ICU neg and NLP-Dx-BD neg patients (overall P  &lt; 0.001). Regardless of CAM-ICU status, after adjustment and on time-dependent Cox modelling, NLP-Dx-BD was associated with greater antipsychotic medication use. Finally, regardless of CAM-ICU status, NLP-Dx-BD pos patients had longer duration of ICU and hospital stay and greater hospital mortality (all P  &lt; 0.001). Conclusion More patients were NLP-Dx-BD positive than CAM-ICU positive. NLP-Dx-BD and CAM-ICU assessment describe partly overlapping populations. However, NLP-Dx-BD identifies more patients likely to receive antipsychotic medications. In the absence of NLP-Dx-BD, treatment with antipsychotic medications is rare.</description><subject>Anesthesiology</subject><subject>Antipsychotic Agents - therapeutic use</subject><subject>Antipsychotic drugs</subject><subject>Antipsychotics</subject><subject>Care and treatment</subject><subject>Computational linguistics</subject><subject>Confusion</subject><subject>Critical Care Medicine</subject><subject>Delirium</subject><subject>Delirium - diagnosis</subject><subject>Delirium - drug therapy</subject><subject>Delirium - epidemiology</subject><subject>Demographics</subject><subject>Emergency Medicine</subject><subject>Hospital patients</subject><subject>Humans</subject><subject>Intensive</subject><subject>Intensive care</subject><subject>Intensive Care Units</subject><subject>Language</subject><subject>Language processing</subject><subject>Medical colleges</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Medicine, Experimental</subject><subject>Mental disorders</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Natural Language Processing</subject><subject>Original</subject><subject>Pain Medicine</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Pneumology/Respiratory System</subject><subject>Prevalence</subject><subject>Psychotropic drugs</subject><subject>Treatment Outcome</subject><issn>0342-4642</issn><issn>1432-1238</issn><issn>1432-1238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kktv1DAUhSMEokPhD7BAltiwmBQ_8mSBVFW8pAo2sLYc5yZxldiD7QTRf9l_1JtOaSkaoSwi5X7nHOf6JMlLRk8YpeXbQCkTWUo5T2lR5DS9fJRsWCZ4yrioHicbKjKeZkXGj5JnIVwgXhY5e5ociVxwzqtqk1x9VXH2aiSjsv2seiA77zSEYGxPWqN66wK0pIFBLcatYGsCKhplNZAlEO1sNwfjLFEhoG4CG8kEcXAt6ZwncQBibAQbzAJEKw9ktia-wxxY1AhosyU7Fc2q04PySkfwmGF02BK3gB_VbkuUbdcApw2iGPbLxIFEDyreBK5jN0ftJniePOnUGODF7fs4-fHxw_ezz-n5t09fzk7PU53TOqZNzVWnGc9p0-acap4DKN2wnNWNYgXXtGwbTWumsiwrq1azoiloVXVZo7kQWhwn7_e-u7mZoNV4DFyP3HkzKf9bOmXkw4k1g-zdImua07ISaPDm1sC7nzOEKCcTNIx4E-DmIDleXFXVmI7o63_QCzd7i7-HVF5kGS9qfk_1uFdpbOcwV6-m8rTERtScC4ZUeoDqwQIe0lnoDH5-wJ8c4PFpYTL6oIDvBdq7EDx0dzthVK7FlfviSiyuvCmuvETRq7-3eSf501QExB4IOLI9-PsV_Mf2Gqdm_zI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Young, Marcus</creator><creator>Holmes, Natasha</creator><creator>Kishore, Kartik</creator><creator>Marhoon, Nada</creator><creator>Amjad, Sobia</creator><creator>Serpa-Neto, Ary</creator><creator>Bellomo, Rinaldo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1650-8939</orcidid></search><sort><creationdate>20220501</creationdate><title>Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome</title><author>Young, Marcus ; Holmes, Natasha ; Kishore, Kartik ; Marhoon, Nada ; Amjad, Sobia ; Serpa-Neto, Ary ; Bellomo, Rinaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-b92afc1250bd520c25eeacb1519ba162c07dbc091a44478dc16b6088f4bc233c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anesthesiology</topic><topic>Antipsychotic Agents - therapeutic use</topic><topic>Antipsychotic drugs</topic><topic>Antipsychotics</topic><topic>Care and treatment</topic><topic>Computational linguistics</topic><topic>Confusion</topic><topic>Critical Care Medicine</topic><topic>Delirium</topic><topic>Delirium - diagnosis</topic><topic>Delirium - drug therapy</topic><topic>Delirium - epidemiology</topic><topic>Demographics</topic><topic>Emergency Medicine</topic><topic>Hospital patients</topic><topic>Humans</topic><topic>Intensive</topic><topic>Intensive care</topic><topic>Intensive Care Units</topic><topic>Language</topic><topic>Language processing</topic><topic>Medical colleges</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Medicine, Experimental</topic><topic>Mental disorders</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Natural Language Processing</topic><topic>Original</topic><topic>Pain Medicine</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Pneumology/Respiratory System</topic><topic>Prevalence</topic><topic>Psychotropic drugs</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Marcus</creatorcontrib><creatorcontrib>Holmes, Natasha</creatorcontrib><creatorcontrib>Kishore, Kartik</creatorcontrib><creatorcontrib>Marhoon, Nada</creatorcontrib><creatorcontrib>Amjad, Sobia</creatorcontrib><creatorcontrib>Serpa-Neto, Ary</creatorcontrib><creatorcontrib>Bellomo, Rinaldo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Intensive care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Marcus</au><au>Holmes, Natasha</au><au>Kishore, Kartik</au><au>Marhoon, Nada</au><au>Amjad, Sobia</au><au>Serpa-Neto, Ary</au><au>Bellomo, Rinaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome</atitle><jtitle>Intensive care medicine</jtitle><stitle>Intensive Care Med</stitle><addtitle>Intensive Care Med</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>48</volume><issue>5</issue><spage>559</spage><epage>569</epage><pages>559-569</pages><issn>0342-4642</issn><issn>1432-1238</issn><eissn>1432-1238</eissn><abstract>Purpose To compare the prevalence, characteristics, drug treatment for delirium, and outcomes of patients with Natural Language Processing (NLP) diagnosed behavioral disturbance (NLP-Dx-BD) vs Confusion Assessment Method for intensive care unit (CAM-ICU) positivity. Methods In three combined medical-surgical ICUs, we obtained data on demographics, treatment with antipsychotic medications, and outcomes. We applied NLP to caregiver progress notes to diagnose behavioral disturbance and analyzed simultaneous CAM-ICU. Results We assessed 2313 patients with a median lowest Richmond Agitation-Sedation Scale (RASS) score of − 2 (− 4.0 to − 1.0) and median highest RASS score of 1 (0 to 1). Overall, 1246 (53.9%) patients were NLP-Dx-BD positive (NLP-Dx-BD pos ) and 578 (25%) were CAM-ICU positive (CAM-ICU pos ). Among NLP-Dx-BD pos patients, 539 (43.3%) were also CAM-ICU pos . In contrast, among CAM-ICU pos patients, 539 (93.3%) were also NLP-Dx-BD pos . The use of antipsychotic medications was highest in patients in the CAM-ICU pos and NLP-Dx-BD pos group (24.3%) followed by the CAM-ICU neg and NLP-Dx-BD pos group (10.5%). In NLP-Dx-BD neg patients, antipsychotic medication use was lower at 5.1% for CAM-ICU pos and NLP-Dx-BD neg patients and 2.3% for CAM-ICU neg and NLP-Dx-BD neg patients (overall P  &lt; 0.001). Regardless of CAM-ICU status, after adjustment and on time-dependent Cox modelling, NLP-Dx-BD was associated with greater antipsychotic medication use. Finally, regardless of CAM-ICU status, NLP-Dx-BD pos patients had longer duration of ICU and hospital stay and greater hospital mortality (all P  &lt; 0.001). Conclusion More patients were NLP-Dx-BD positive than CAM-ICU positive. NLP-Dx-BD and CAM-ICU assessment describe partly overlapping populations. However, NLP-Dx-BD identifies more patients likely to receive antipsychotic medications. In the absence of NLP-Dx-BD, treatment with antipsychotic medications is rare.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35322288</pmid><doi>10.1007/s00134-022-06650-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1650-8939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0342-4642
ispartof Intensive care medicine, 2022-05, Vol.48 (5), p.559-569
issn 0342-4642
1432-1238
1432-1238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050783
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anesthesiology
Antipsychotic Agents - therapeutic use
Antipsychotic drugs
Antipsychotics
Care and treatment
Computational linguistics
Confusion
Critical Care Medicine
Delirium
Delirium - diagnosis
Delirium - drug therapy
Delirium - epidemiology
Demographics
Emergency Medicine
Hospital patients
Humans
Intensive
Intensive care
Intensive Care Units
Language
Language processing
Medical colleges
Medical diagnosis
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Mental disorders
Methods
Natural language interfaces
Natural Language Processing
Original
Pain Medicine
Patient outcomes
Patients
Pediatrics
Pneumology/Respiratory System
Prevalence
Psychotropic drugs
Treatment Outcome
title Natural language processing diagnosed behavioral disturbance vs confusion assessment method for the intensive care unit: prevalence, patient characteristics, overlap, and association with treatment and outcome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20language%20processing%20diagnosed%20behavioral%20disturbance%20vs%20confusion%20assessment%20method%20for%20the%20intensive%20care%20unit:%20prevalence,%20patient%20characteristics,%20overlap,%20and%20association%20with%20treatment%20and%20outcome&rft.jtitle=Intensive%20care%20medicine&rft.au=Young,%20Marcus&rft.date=2022-05-01&rft.volume=48&rft.issue=5&rft.spage=559&rft.epage=569&rft.pages=559-569&rft.issn=0342-4642&rft.eissn=1432-1238&rft_id=info:doi/10.1007/s00134-022-06650-z&rft_dat=%3Cgale_pubme%3EA723892231%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656442692&rft_id=info:pmid/35322288&rft_galeid=A723892231&rfr_iscdi=true