Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification

In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2022-04, Vol.145 (3), p.897-908
Hauptverfasser: Lee, Hyo Min, Fadaie, Fatemeh, Gill, Ravnoor, Caldairou, Benoit, Sziklas, Viviane, Crane, Joelle, Hong, Seok-Jun, Bernhardt, Boris C, Bernasconi, Andrea, Bernasconi, Neda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue 3
container_start_page 897
container_title Brain (London, England : 1878)
container_volume 145
creator Lee, Hyo Min
Fadaie, Fatemeh
Gill, Ravnoor
Caldairou, Benoit
Sziklas, Viviane
Crane, Joelle
Hong, Seok-Jun
Bernhardt, Boris C
Bernasconi, Andrea
Bernasconi, Neda
description In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.
doi_str_mv 10.1093/brain/awab425
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605225825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-300b145836ea358dc3fd6f3dafcb6ec74bec2ee70c0aad20697e869d4acd61b93</originalsourceid><addsrcrecordid>eNpVkU1vEzEQQC0EomnhyBX5yGWpv7PLAQkVKJWKKiF6NrP2bGK0sY3ttEp_PSkNFZzmME9vRnqEvOLsLWeDPB0LhHgKtzAqoZ-QBVeGdYJr85QsGGOm6wfNjshxrT8Z40oK85wcSdWrwfBhQX58RJc2OdUQV_Trtwua1xhT2-Xg6BoblrTCiKHtaIgUc5gx1907CrQ2zLSlWyi-0oylpghzuENP3Qy1hik4aCHFF-TZBHPFl4d5Qq4_f_p-9qW7vDq_OPtw2TnJl62TjI1c6V4aBKl77-TkzSQ9TG406JZqRCcQl8wxAC-YGZbYm8ErcN7wcZAn5P2DN2_HDXqHsRWYbS5hA2VnEwT7_yaGtV2lGzswzbRQe8Gbg6CkX1uszW5CdTjPEDFtqxVmjwndC71HuwfUlVRrwenxDGf2vor9U8Uequz51__-9kj_zSB_A3LYjtY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605225825</pqid></control><display><type>article</type><title>Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Lee, Hyo Min ; Fadaie, Fatemeh ; Gill, Ravnoor ; Caldairou, Benoit ; Sziklas, Viviane ; Crane, Joelle ; Hong, Seok-Jun ; Bernhardt, Boris C ; Bernasconi, Andrea ; Bernasconi, Neda</creator><creatorcontrib>Lee, Hyo Min ; Fadaie, Fatemeh ; Gill, Ravnoor ; Caldairou, Benoit ; Sziklas, Viviane ; Crane, Joelle ; Hong, Seok-Jun ; Bernhardt, Boris C ; Bernasconi, Andrea ; Bernasconi, Neda</creatorcontrib><description>In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awab425</identifier><identifier>PMID: 34849619</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Atrophy - pathology ; Drug Resistant Epilepsy - pathology ; Editor's Choice ; Epilepsy - pathology ; Epilepsy, Temporal Lobe - pathology ; Hippocampus - pathology ; Humans ; Magnetic Resonance Imaging ; Original</subject><ispartof>Brain (London, England : 1878), 2022-04, Vol.145 (3), p.897-908</ispartof><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-300b145836ea358dc3fd6f3dafcb6ec74bec2ee70c0aad20697e869d4acd61b93</citedby><cites>FETCH-LOGICAL-c317t-300b145836ea358dc3fd6f3dafcb6ec74bec2ee70c0aad20697e869d4acd61b93</cites><orcidid>0000-0002-1847-578X ; 0000-0001-9358-5703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34849619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hyo Min</creatorcontrib><creatorcontrib>Fadaie, Fatemeh</creatorcontrib><creatorcontrib>Gill, Ravnoor</creatorcontrib><creatorcontrib>Caldairou, Benoit</creatorcontrib><creatorcontrib>Sziklas, Viviane</creatorcontrib><creatorcontrib>Crane, Joelle</creatorcontrib><creatorcontrib>Hong, Seok-Jun</creatorcontrib><creatorcontrib>Bernhardt, Boris C</creatorcontrib><creatorcontrib>Bernasconi, Andrea</creatorcontrib><creatorcontrib>Bernasconi, Neda</creatorcontrib><title>Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.</description><subject>Atrophy - pathology</subject><subject>Drug Resistant Epilepsy - pathology</subject><subject>Editor's Choice</subject><subject>Epilepsy - pathology</subject><subject>Epilepsy, Temporal Lobe - pathology</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Original</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1vEzEQQC0EomnhyBX5yGWpv7PLAQkVKJWKKiF6NrP2bGK0sY3ttEp_PSkNFZzmME9vRnqEvOLsLWeDPB0LhHgKtzAqoZ-QBVeGdYJr85QsGGOm6wfNjshxrT8Z40oK85wcSdWrwfBhQX58RJc2OdUQV_Trtwua1xhT2-Xg6BoblrTCiKHtaIgUc5gx1907CrQ2zLSlWyi-0oylpghzuENP3Qy1hik4aCHFF-TZBHPFl4d5Qq4_f_p-9qW7vDq_OPtw2TnJl62TjI1c6V4aBKl77-TkzSQ9TG406JZqRCcQl8wxAC-YGZbYm8ErcN7wcZAn5P2DN2_HDXqHsRWYbS5hA2VnEwT7_yaGtV2lGzswzbRQe8Gbg6CkX1uszW5CdTjPEDFtqxVmjwndC71HuwfUlVRrwenxDGf2vor9U8Uequz51__-9kj_zSB_A3LYjtY</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Lee, Hyo Min</creator><creator>Fadaie, Fatemeh</creator><creator>Gill, Ravnoor</creator><creator>Caldairou, Benoit</creator><creator>Sziklas, Viviane</creator><creator>Crane, Joelle</creator><creator>Hong, Seok-Jun</creator><creator>Bernhardt, Boris C</creator><creator>Bernasconi, Andrea</creator><creator>Bernasconi, Neda</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1847-578X</orcidid><orcidid>https://orcid.org/0000-0001-9358-5703</orcidid></search><sort><creationdate>20220429</creationdate><title>Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification</title><author>Lee, Hyo Min ; Fadaie, Fatemeh ; Gill, Ravnoor ; Caldairou, Benoit ; Sziklas, Viviane ; Crane, Joelle ; Hong, Seok-Jun ; Bernhardt, Boris C ; Bernasconi, Andrea ; Bernasconi, Neda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-300b145836ea358dc3fd6f3dafcb6ec74bec2ee70c0aad20697e869d4acd61b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atrophy - pathology</topic><topic>Drug Resistant Epilepsy - pathology</topic><topic>Editor's Choice</topic><topic>Epilepsy - pathology</topic><topic>Epilepsy, Temporal Lobe - pathology</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyo Min</creatorcontrib><creatorcontrib>Fadaie, Fatemeh</creatorcontrib><creatorcontrib>Gill, Ravnoor</creatorcontrib><creatorcontrib>Caldairou, Benoit</creatorcontrib><creatorcontrib>Sziklas, Viviane</creatorcontrib><creatorcontrib>Crane, Joelle</creatorcontrib><creatorcontrib>Hong, Seok-Jun</creatorcontrib><creatorcontrib>Bernhardt, Boris C</creatorcontrib><creatorcontrib>Bernasconi, Andrea</creatorcontrib><creatorcontrib>Bernasconi, Neda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyo Min</au><au>Fadaie, Fatemeh</au><au>Gill, Ravnoor</au><au>Caldairou, Benoit</au><au>Sziklas, Viviane</au><au>Crane, Joelle</au><au>Hong, Seok-Jun</au><au>Bernhardt, Boris C</au><au>Bernasconi, Andrea</au><au>Bernasconi, Neda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>145</volume><issue>3</issue><spage>897</spage><epage>908</epage><pages>897-908</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34849619</pmid><doi>10.1093/brain/awab425</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1847-578X</orcidid><orcidid>https://orcid.org/0000-0001-9358-5703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2022-04, Vol.145 (3), p.897-908
issn 0006-8950
1460-2156
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050524
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Atrophy - pathology
Drug Resistant Epilepsy - pathology
Editor's Choice
Epilepsy - pathology
Epilepsy, Temporal Lobe - pathology
Hippocampus - pathology
Humans
Magnetic Resonance Imaging
Original
title Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposing%20MRI%20phenotypic%20heterogeneity%20in%20epilepsy:%20a%20step%20towards%20personalized%20classification&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Lee,%20Hyo%20Min&rft.date=2022-04-29&rft.volume=145&rft.issue=3&rft.spage=897&rft.epage=908&rft.pages=897-908&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awab425&rft_dat=%3Cproquest_pubme%3E2605225825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605225825&rft_id=info:pmid/34849619&rfr_iscdi=true