Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor

Hybrid ion capacitors (HICs) based on insertion reactions have attracted considerable attention due to their energy density being much higher than that of the electrical double-layer capacitors (EDLCs). However, the development of hybrid ion capacitors with high energy density at high power density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-02, Vol.1 (13), p.778-779
Hauptverfasser: Xu, Jiaxin, Liu, Zhanying, Zhang, Fang, Tao, Jie, Shen, Laifa, Zhang, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 13
container_start_page 778
container_title RSC advances
container_volume 1
creator Xu, Jiaxin
Liu, Zhanying
Zhang, Fang
Tao, Jie
Shen, Laifa
Zhang, Xiaogang
description Hybrid ion capacitors (HICs) based on insertion reactions have attracted considerable attention due to their energy density being much higher than that of the electrical double-layer capacitors (EDLCs). However, the development of hybrid ion capacitors with high energy density at high power density is a big challenge due to the mismatch of charge storage capacities and electrode kinetics between the battery-type anode and capacitor-type cathode. In this work, N and O dual doped carbon nanofibers (N,O-CNFs) were combined with carbon nanotubes (CNTs) to compose a complex carbon anode. N,O dual doping effectively tuned the functional group and surface activity of the CNFs while the integration of CNTs increased the extent of graphitization and electrical conductivity. The carbon cathode with high specific surface area and high capacity was obtained by the activation of CNFs (A-CNFs). Finally, a hybrid sodium ion capacitor was constructed by the double carbon electrode, which showed a superior electrochemical capacitive performance. The as-assembled HIC device delivers a maximum energy density of 59.2 W h kg −1 at a power density of 275 W kg −1 , with a high energy density of 38.7 W h kg −1 at a power density of 5500 W kg −1 . A hybrid sodium ion capacitor is constructed by the double carbon electrode, whose precursors are both from nanofibers of bacterial cellulose, showing a superior electrochemical capacitive performance.
doi_str_mv 10.1039/c9ra10225f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9049867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369318754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-38842cf40f9b6404e17171db5ccc02a02d076b01013a3e4eb819f00190b488a33</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoMottTeeK9EvJHC6MnnTG6EulgVCoLodchnN2V2siYzhf57s267Vi9MIDmc8-TlJG8Qek7gLQGm3jlVDAFKRXyEjilw2VGQ6vGD-Aid1noNbUhBqCRP0RETXFEi5DG6-mDcHEoyI3ZhHJcx19D5lrgJHjtTbJ7wZKYckw2lYlOxzfMat4wPbd0x83oXx1zw-taW5HHNPi0bnNpRZ7bGpTmXZ-hJNGMNp3f7Cfpx8fH76nN3-fXTl9X5ZecEhbljw8CpixyispIDD6Rv01vhnANqgHropQUChBkWeLADURGAKLB8GAxjJ-j9Xne72E3wLkxzMaPelrQx5VZnk_TflSmt9VW-0Qq4GmTfBN7cCZT8cwl11ptUd09jppCXqqkUgxTQK9XQ1_-g13kpU7uepkwqRoZe8Ead7SlXcq0lxEMzBPTOQr1S385_W3jR4JcP2z-g94Y14NUeKNUdqn_-gN762JgX_2PYL-ssrCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369318754</pqid></control><display><type>article</type><title>Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Xu, Jiaxin ; Liu, Zhanying ; Zhang, Fang ; Tao, Jie ; Shen, Laifa ; Zhang, Xiaogang</creator><creatorcontrib>Xu, Jiaxin ; Liu, Zhanying ; Zhang, Fang ; Tao, Jie ; Shen, Laifa ; Zhang, Xiaogang</creatorcontrib><description>Hybrid ion capacitors (HICs) based on insertion reactions have attracted considerable attention due to their energy density being much higher than that of the electrical double-layer capacitors (EDLCs). However, the development of hybrid ion capacitors with high energy density at high power density is a big challenge due to the mismatch of charge storage capacities and electrode kinetics between the battery-type anode and capacitor-type cathode. In this work, N and O dual doped carbon nanofibers (N,O-CNFs) were combined with carbon nanotubes (CNTs) to compose a complex carbon anode. N,O dual doping effectively tuned the functional group and surface activity of the CNFs while the integration of CNTs increased the extent of graphitization and electrical conductivity. The carbon cathode with high specific surface area and high capacity was obtained by the activation of CNFs (A-CNFs). Finally, a hybrid sodium ion capacitor was constructed by the double carbon electrode, which showed a superior electrochemical capacitive performance. The as-assembled HIC device delivers a maximum energy density of 59.2 W h kg −1 at a power density of 275 W kg −1 , with a high energy density of 38.7 W h kg −1 at a power density of 5500 W kg −1 . A hybrid sodium ion capacitor is constructed by the double carbon electrode, whose precursors are both from nanofibers of bacterial cellulose, showing a superior electrochemical capacitive performance.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra10225f</identifier><identifier>PMID: 35492156</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anode effect ; Capacitors ; Carbon fibers ; Carbon nanotubes ; Cathodes ; Chemistry ; Electrical resistivity ; Electrodes ; Flux density ; Functional groups ; Graphitization ; Nanofibers ; Reaction kinetics</subject><ispartof>RSC advances, 2020-02, Vol.1 (13), p.778-779</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-38842cf40f9b6404e17171db5ccc02a02d076b01013a3e4eb819f00190b488a33</citedby><cites>FETCH-LOGICAL-c520t-38842cf40f9b6404e17171db5ccc02a02d076b01013a3e4eb819f00190b488a33</cites><orcidid>0000-0003-4464-672X ; 0000-0003-0377-9542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhanying</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><title>Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Hybrid ion capacitors (HICs) based on insertion reactions have attracted considerable attention due to their energy density being much higher than that of the electrical double-layer capacitors (EDLCs). However, the development of hybrid ion capacitors with high energy density at high power density is a big challenge due to the mismatch of charge storage capacities and electrode kinetics between the battery-type anode and capacitor-type cathode. In this work, N and O dual doped carbon nanofibers (N,O-CNFs) were combined with carbon nanotubes (CNTs) to compose a complex carbon anode. N,O dual doping effectively tuned the functional group and surface activity of the CNFs while the integration of CNTs increased the extent of graphitization and electrical conductivity. The carbon cathode with high specific surface area and high capacity was obtained by the activation of CNFs (A-CNFs). Finally, a hybrid sodium ion capacitor was constructed by the double carbon electrode, which showed a superior electrochemical capacitive performance. The as-assembled HIC device delivers a maximum energy density of 59.2 W h kg −1 at a power density of 275 W kg −1 , with a high energy density of 38.7 W h kg −1 at a power density of 5500 W kg −1 . A hybrid sodium ion capacitor is constructed by the double carbon electrode, whose precursors are both from nanofibers of bacterial cellulose, showing a superior electrochemical capacitive performance.</description><subject>Anode effect</subject><subject>Capacitors</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Flux density</subject><subject>Functional groups</subject><subject>Graphitization</subject><subject>Nanofibers</subject><subject>Reaction kinetics</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kl1rFDEUhoMottTeeK9EvJHC6MnnTG6EulgVCoLodchnN2V2siYzhf57s267Vi9MIDmc8-TlJG8Qek7gLQGm3jlVDAFKRXyEjilw2VGQ6vGD-Aid1noNbUhBqCRP0RETXFEi5DG6-mDcHEoyI3ZhHJcx19D5lrgJHjtTbJ7wZKYckw2lYlOxzfMat4wPbd0x83oXx1zw-taW5HHNPi0bnNpRZ7bGpTmXZ-hJNGMNp3f7Cfpx8fH76nN3-fXTl9X5ZecEhbljw8CpixyispIDD6Rv01vhnANqgHropQUChBkWeLADURGAKLB8GAxjJ-j9Xne72E3wLkxzMaPelrQx5VZnk_TflSmt9VW-0Qq4GmTfBN7cCZT8cwl11ptUd09jppCXqqkUgxTQK9XQ1_-g13kpU7uepkwqRoZe8Ead7SlXcq0lxEMzBPTOQr1S385_W3jR4JcP2z-g94Y14NUeKNUdqn_-gN762JgX_2PYL-ssrCQ</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Xu, Jiaxin</creator><creator>Liu, Zhanying</creator><creator>Zhang, Fang</creator><creator>Tao, Jie</creator><creator>Shen, Laifa</creator><creator>Zhang, Xiaogang</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4464-672X</orcidid><orcidid>https://orcid.org/0000-0003-0377-9542</orcidid></search><sort><creationdate>20200224</creationdate><title>Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor</title><author>Xu, Jiaxin ; Liu, Zhanying ; Zhang, Fang ; Tao, Jie ; Shen, Laifa ; Zhang, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-38842cf40f9b6404e17171db5ccc02a02d076b01013a3e4eb819f00190b488a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode effect</topic><topic>Capacitors</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Flux density</topic><topic>Functional groups</topic><topic>Graphitization</topic><topic>Nanofibers</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhanying</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Tao, Jie</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><creatorcontrib>Zhang, Xiaogang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiaxin</au><au>Liu, Zhanying</au><au>Zhang, Fang</au><au>Tao, Jie</au><au>Shen, Laifa</au><au>Zhang, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-02-24</date><risdate>2020</risdate><volume>1</volume><issue>13</issue><spage>778</spage><epage>779</epage><pages>778-779</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Hybrid ion capacitors (HICs) based on insertion reactions have attracted considerable attention due to their energy density being much higher than that of the electrical double-layer capacitors (EDLCs). However, the development of hybrid ion capacitors with high energy density at high power density is a big challenge due to the mismatch of charge storage capacities and electrode kinetics between the battery-type anode and capacitor-type cathode. In this work, N and O dual doped carbon nanofibers (N,O-CNFs) were combined with carbon nanotubes (CNTs) to compose a complex carbon anode. N,O dual doping effectively tuned the functional group and surface activity of the CNFs while the integration of CNTs increased the extent of graphitization and electrical conductivity. The carbon cathode with high specific surface area and high capacity was obtained by the activation of CNFs (A-CNFs). Finally, a hybrid sodium ion capacitor was constructed by the double carbon electrode, which showed a superior electrochemical capacitive performance. The as-assembled HIC device delivers a maximum energy density of 59.2 W h kg −1 at a power density of 275 W kg −1 , with a high energy density of 38.7 W h kg −1 at a power density of 5500 W kg −1 . A hybrid sodium ion capacitor is constructed by the double carbon electrode, whose precursors are both from nanofibers of bacterial cellulose, showing a superior electrochemical capacitive performance.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492156</pmid><doi>10.1039/c9ra10225f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4464-672X</orcidid><orcidid>https://orcid.org/0000-0003-0377-9542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-02, Vol.1 (13), p.778-779
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9049867
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anode effect
Capacitors
Carbon fibers
Carbon nanotubes
Cathodes
Chemistry
Electrical resistivity
Electrodes
Flux density
Functional groups
Graphitization
Nanofibers
Reaction kinetics
title Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20cellulose-derived%20carbon%20nanofibers%20as%20both%20anode%20and%20cathode%20for%20hybrid%20sodium%20ion%20capacitor&rft.jtitle=RSC%20advances&rft.au=Xu,%20Jiaxin&rft.date=2020-02-24&rft.volume=1&rft.issue=13&rft.spage=778&rft.epage=779&rft.pages=778-779&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra10225f&rft_dat=%3Cproquest_pubme%3E2369318754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369318754&rft_id=info:pmid/35492156&rfr_iscdi=true