Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism
Compressible carbon materials have promising applications in various wearable devices. However, it is still difficult to prepare a carbon material with superior mechanical properties, stable strain-electrical signal response, and high linear sensitivity. In this study, a compressible and conductive...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-01, Vol.10 (4), p.2150-2159 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2159 |
---|---|
container_issue | 4 |
container_start_page | 2150 |
container_title | RSC advances |
container_volume | 10 |
creator | Zhou, Kemeng Chen, Changzhou Lei, Min Gao, Qian Nie, Shuangxi Liu, Xinliang Wang, Shuangfei |
description | Compressible carbon materials have promising applications in various wearable devices. However, it is still difficult to prepare a carbon material with superior mechanical properties, stable strain-electrical signal response, and high linear sensitivity. In this study, a compressible and conductive carbon aerogel with excellent properties is obtained by designing an ordered wavy layered structure with enhanced interactions between carbon layers. Bidirectional freezing is used to produce a wavy layered structure. Cellulose nanocrystals (CNC) and lignin play important roles in enhancing the interactions between reduced graphene oxide (rGO) layers. Due to the design of the carbon aerogel structure and interlayer interactions, the prepared carbon aerogel exhibits supercompressibility (up to 99% ultimate strain), excellent elasticity and fatigue resistance (91.3% height retention after 10 000 cycles at a strain of 30%), and stable strain-current response. Moreover, the carbon aerogel demonstrated an ultrahigh sensitivity of 190.94 kPa
, a wide linear range (within strain of 0-80%), and a low detection limit for pressure (0.875 Pa). These advantages suggest that this carbon aerogel has great application potential in wearable devices. |
doi_str_mv | 10.1039/c9ra08653f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9048576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658652160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-19fd9919f644e773cfb983790d5b0c1ba69a211816dda4ab56b29917e481596e3</originalsourceid><addsrcrecordid>eNpdkd1q3DAQhU1paUKamz5AEfSmFJzox5atm0JYmjYQCITkWoyl8VrBlraSve0-TN-12mwa0gpGGkafzow4RfGe0TNGhTo3KgJtZS36V8Uxp5UsOZXq9Yv8qDhN6YHmJWvGJXtbHIm6UpVk_Lj4fYt2MWjJOsJmQI8k_HIWyw5SLg5uPYw7ktAnN7stkk3ElJaIj6UQSZ_jJ0KEbkSCI5o5Bu9MIlsHBDwJ0WLMQmmOi5n3D8Fbgn4Av2_q_IxxhB3GQwpmdsGTCU0GXJreFW96GBOePp0nxf3l17vV9_L65tvV6uK6NBWVc8lUb5XKu6wqbBph-k61olHU1h01rAOpgDPWMmktVNDVsuOZb7BqWa0kipPiy0F3s3QTWoN-jjDqTXQTxJ0O4PS_N94Neh22WtGqrRuZBT49CcTwY8E068klg-MIHsOSNJd19ogzSTP68T_0ISzR5-9pLkTDRCM5y9TnA2ViSCli_zwMo3pvvF6p24tH4y8z_OHl-M_oX5vFH-yUrRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337137621</pqid></control><display><type>article</type><title>Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zhou, Kemeng ; Chen, Changzhou ; Lei, Min ; Gao, Qian ; Nie, Shuangxi ; Liu, Xinliang ; Wang, Shuangfei</creator><creatorcontrib>Zhou, Kemeng ; Chen, Changzhou ; Lei, Min ; Gao, Qian ; Nie, Shuangxi ; Liu, Xinliang ; Wang, Shuangfei</creatorcontrib><description>Compressible carbon materials have promising applications in various wearable devices. However, it is still difficult to prepare a carbon material with superior mechanical properties, stable strain-electrical signal response, and high linear sensitivity. In this study, a compressible and conductive carbon aerogel with excellent properties is obtained by designing an ordered wavy layered structure with enhanced interactions between carbon layers. Bidirectional freezing is used to produce a wavy layered structure. Cellulose nanocrystals (CNC) and lignin play important roles in enhancing the interactions between reduced graphene oxide (rGO) layers. Due to the design of the carbon aerogel structure and interlayer interactions, the prepared carbon aerogel exhibits supercompressibility (up to 99% ultimate strain), excellent elasticity and fatigue resistance (91.3% height retention after 10 000 cycles at a strain of 30%), and stable strain-current response. Moreover, the carbon aerogel demonstrated an ultrahigh sensitivity of 190.94 kPa
, a wide linear range (within strain of 0-80%), and a low detection limit for pressure (0.875 Pa). These advantages suggest that this carbon aerogel has great application potential in wearable devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra08653f</identifier><identifier>PMID: 35494612</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aerogels ; Carbon ; Chemistry ; Compressibility ; Elasticity ; Fatigue strength ; Freezing ; Graphene ; Interlayers ; Mechanical properties ; Nanocrystals ; Pressure sensors ; Sensitivity ; Strain ; Wearable technology</subject><ispartof>RSC advances, 2020-01, Vol.10 (4), p.2150-2159</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-19fd9919f644e773cfb983790d5b0c1ba69a211816dda4ab56b29917e481596e3</citedby><cites>FETCH-LOGICAL-c406t-19fd9919f644e773cfb983790d5b0c1ba69a211816dda4ab56b29917e481596e3</cites><orcidid>0000-0001-9695-3022 ; 0000-0001-9282-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35494612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Kemeng</creatorcontrib><creatorcontrib>Chen, Changzhou</creatorcontrib><creatorcontrib>Lei, Min</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Nie, Shuangxi</creatorcontrib><creatorcontrib>Liu, Xinliang</creatorcontrib><creatorcontrib>Wang, Shuangfei</creatorcontrib><title>Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Compressible carbon materials have promising applications in various wearable devices. However, it is still difficult to prepare a carbon material with superior mechanical properties, stable strain-electrical signal response, and high linear sensitivity. In this study, a compressible and conductive carbon aerogel with excellent properties is obtained by designing an ordered wavy layered structure with enhanced interactions between carbon layers. Bidirectional freezing is used to produce a wavy layered structure. Cellulose nanocrystals (CNC) and lignin play important roles in enhancing the interactions between reduced graphene oxide (rGO) layers. Due to the design of the carbon aerogel structure and interlayer interactions, the prepared carbon aerogel exhibits supercompressibility (up to 99% ultimate strain), excellent elasticity and fatigue resistance (91.3% height retention after 10 000 cycles at a strain of 30%), and stable strain-current response. Moreover, the carbon aerogel demonstrated an ultrahigh sensitivity of 190.94 kPa
, a wide linear range (within strain of 0-80%), and a low detection limit for pressure (0.875 Pa). These advantages suggest that this carbon aerogel has great application potential in wearable devices.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Compressibility</subject><subject>Elasticity</subject><subject>Fatigue strength</subject><subject>Freezing</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Pressure sensors</subject><subject>Sensitivity</subject><subject>Strain</subject><subject>Wearable technology</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkd1q3DAQhU1paUKamz5AEfSmFJzox5atm0JYmjYQCITkWoyl8VrBlraSve0-TN-12mwa0gpGGkafzow4RfGe0TNGhTo3KgJtZS36V8Uxp5UsOZXq9Yv8qDhN6YHmJWvGJXtbHIm6UpVk_Lj4fYt2MWjJOsJmQI8k_HIWyw5SLg5uPYw7ktAnN7stkk3ElJaIj6UQSZ_jJ0KEbkSCI5o5Bu9MIlsHBDwJ0WLMQmmOi5n3D8Fbgn4Av2_q_IxxhB3GQwpmdsGTCU0GXJreFW96GBOePp0nxf3l17vV9_L65tvV6uK6NBWVc8lUb5XKu6wqbBph-k61olHU1h01rAOpgDPWMmktVNDVsuOZb7BqWa0kipPiy0F3s3QTWoN-jjDqTXQTxJ0O4PS_N94Neh22WtGqrRuZBT49CcTwY8E068klg-MIHsOSNJd19ogzSTP68T_0ISzR5-9pLkTDRCM5y9TnA2ViSCli_zwMo3pvvF6p24tH4y8z_OHl-M_oX5vFH-yUrRU</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Zhou, Kemeng</creator><creator>Chen, Changzhou</creator><creator>Lei, Min</creator><creator>Gao, Qian</creator><creator>Nie, Shuangxi</creator><creator>Liu, Xinliang</creator><creator>Wang, Shuangfei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9695-3022</orcidid><orcidid>https://orcid.org/0000-0001-9282-9892</orcidid></search><sort><creationdate>20200110</creationdate><title>Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism</title><author>Zhou, Kemeng ; Chen, Changzhou ; Lei, Min ; Gao, Qian ; Nie, Shuangxi ; Liu, Xinliang ; Wang, Shuangfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-19fd9919f644e773cfb983790d5b0c1ba69a211816dda4ab56b29917e481596e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Compressibility</topic><topic>Elasticity</topic><topic>Fatigue strength</topic><topic>Freezing</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Pressure sensors</topic><topic>Sensitivity</topic><topic>Strain</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kemeng</creatorcontrib><creatorcontrib>Chen, Changzhou</creatorcontrib><creatorcontrib>Lei, Min</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Nie, Shuangxi</creatorcontrib><creatorcontrib>Liu, Xinliang</creatorcontrib><creatorcontrib>Wang, Shuangfei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kemeng</au><au>Chen, Changzhou</au><au>Lei, Min</au><au>Gao, Qian</au><au>Nie, Shuangxi</au><au>Liu, Xinliang</au><au>Wang, Shuangfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>2150</spage><epage>2159</epage><pages>2150-2159</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Compressible carbon materials have promising applications in various wearable devices. However, it is still difficult to prepare a carbon material with superior mechanical properties, stable strain-electrical signal response, and high linear sensitivity. In this study, a compressible and conductive carbon aerogel with excellent properties is obtained by designing an ordered wavy layered structure with enhanced interactions between carbon layers. Bidirectional freezing is used to produce a wavy layered structure. Cellulose nanocrystals (CNC) and lignin play important roles in enhancing the interactions between reduced graphene oxide (rGO) layers. Due to the design of the carbon aerogel structure and interlayer interactions, the prepared carbon aerogel exhibits supercompressibility (up to 99% ultimate strain), excellent elasticity and fatigue resistance (91.3% height retention after 10 000 cycles at a strain of 30%), and stable strain-current response. Moreover, the carbon aerogel demonstrated an ultrahigh sensitivity of 190.94 kPa
, a wide linear range (within strain of 0-80%), and a low detection limit for pressure (0.875 Pa). These advantages suggest that this carbon aerogel has great application potential in wearable devices.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35494612</pmid><doi>10.1039/c9ra08653f</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9695-3022</orcidid><orcidid>https://orcid.org/0000-0001-9282-9892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-01, Vol.10 (4), p.2150-2159 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9048576 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Aerogels Carbon Chemistry Compressibility Elasticity Fatigue strength Freezing Graphene Interlayers Mechanical properties Nanocrystals Pressure sensors Sensitivity Strain Wearable technology |
title | Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20graphene%20oxide-based%20highly%20sensitive%20pressure%20sensor%20for%20wearable%20electronics%20via%20an%20ordered%20structure%20and%20enhanced%20interlayer%20interaction%20mechanism&rft.jtitle=RSC%20advances&rft.au=Zhou,%20Kemeng&rft.date=2020-01-10&rft.volume=10&rft.issue=4&rft.spage=2150&rft.epage=2159&rft.pages=2150-2159&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra08653f&rft_dat=%3Cproquest_pubme%3E2658652160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337137621&rft_id=info:pmid/35494612&rfr_iscdi=true |