Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain

Hybrid structures comprised of graphene domains embedded in larger hexagonal boron nitride (h-BN) nanosheets were first synthesized in 2013. However, the existing theoretical investigations on them have only considered relaxed structures. In this work, we use Density Functional Theory (DFT) and Mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-10, Vol.11 (56), p.35127-3514
Hauptverfasser: Lima, J. S, Oliveira, I. S, Azevedo, S, Freitas, A, Bezerra, C. G, Machado, L. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3514
container_issue 56
container_start_page 35127
container_title RSC advances
container_volume 11
creator Lima, J. S
Oliveira, I. S
Azevedo, S
Freitas, A
Bezerra, C. G
Machado, L. D
description Hybrid structures comprised of graphene domains embedded in larger hexagonal boron nitride (h-BN) nanosheets were first synthesized in 2013. However, the existing theoretical investigations on them have only considered relaxed structures. In this work, we use Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the mechanical and electronic properties of this type of nanosheet under strain. Our results reveal that the Young's modulus of the hybrid sheets depends only on the relative concentration of graphene and h-BN in the structure, showing little dependence on the shape of the domain or the size of the structure for a given concentration. Regarding the tensile strength, we obtained higher values using triangular graphene domains. We find that the studied systems can withstand large strain values (between 15% and 22%) before fracture, which always begins at the weaker C-B bonds located at the interface between the two materials. Concerning the electronic properties, we find that by combining composition and strain, we can produce hybrid sheets with band gaps spanning an extensive range of values (between 1.0 eV and 3.5 eV). Our results also show that the band gap depends more on the composition than on the external strain, particularly for structures with low carbon concentration. The combination of atomic-scale thickness, high ultimate strain, and adjustable band gap suggests applications of h-BN nanosheets with graphene domains in wearable electronics. We investigate the mechanical and electronic properties of hBN nanosheets with graphene domains under strain. We find that the structures withstand large strain values and present highly adjustable band gaps, ranging from 1.0 to 3.5 eV.
doi_str_mv 10.1039/d1ra05831b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9042849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599147585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d7234c306dc42332949ccdc7303dff0a34a6fd045e93db740f1463ab4d41ddac3</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx4NYVK6-9L0S8EWEa5PNj728COeP1oKlUNrnkE1m3chesia7iv-90bNXNS-Tmfkw-Wa-CH2i5AslTH11NBkiFow2W2ivIlzOKyLV9qv7LtrP-YaUIwWtJN1Bu0xwxahge8j-BNuZ4K3psQkOQw92TLEU8JDiAGn0kHFscRNLFQc_Ju8ABxNi7gDGjO_92OHrZIYOAmAXV8aHjKfgIOE8ppJ9RB9a02fYf4kz9PfbxZ-zy_nVr-8_zpZXc8urxTh3dcW4ZUS6kjNWKa6sdbZmhLm2JYZxI1tHuADFXFNz0lIumWm449Q5Y9kMnaznDlOzAmchlOd7PSS_MulBR-P1207wnb6Od1qRIqBsZIaOXgakeDtBHvXKZwt9bwLEKetKioXkXNS0oIfv0Js4pVC-pyuhFOW1WIhCHa8pm2LOCdqNGEr0k336nP5ePtt3WuCD1_I36D-zCvB5DaRsN93__rNH6_mhGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599147585</pqid></control><display><type>article</type><title>Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Lima, J. S ; Oliveira, I. S ; Azevedo, S ; Freitas, A ; Bezerra, C. G ; Machado, L. D</creator><creatorcontrib>Lima, J. S ; Oliveira, I. S ; Azevedo, S ; Freitas, A ; Bezerra, C. G ; Machado, L. D</creatorcontrib><description>Hybrid structures comprised of graphene domains embedded in larger hexagonal boron nitride (h-BN) nanosheets were first synthesized in 2013. However, the existing theoretical investigations on them have only considered relaxed structures. In this work, we use Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the mechanical and electronic properties of this type of nanosheet under strain. Our results reveal that the Young's modulus of the hybrid sheets depends only on the relative concentration of graphene and h-BN in the structure, showing little dependence on the shape of the domain or the size of the structure for a given concentration. Regarding the tensile strength, we obtained higher values using triangular graphene domains. We find that the studied systems can withstand large strain values (between 15% and 22%) before fracture, which always begins at the weaker C-B bonds located at the interface between the two materials. Concerning the electronic properties, we find that by combining composition and strain, we can produce hybrid sheets with band gaps spanning an extensive range of values (between 1.0 eV and 3.5 eV). Our results also show that the band gap depends more on the composition than on the external strain, particularly for structures with low carbon concentration. The combination of atomic-scale thickness, high ultimate strain, and adjustable band gap suggests applications of h-BN nanosheets with graphene domains in wearable electronics. We investigate the mechanical and electronic properties of hBN nanosheets with graphene domains under strain. We find that the structures withstand large strain values and present highly adjustable band gaps, ranging from 1.0 to 3.5 eV.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05831b</identifier><identifier>PMID: 35493153</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bonding strength ; Boron nitride ; Chemistry ; Composition ; Density functional theory ; Domains ; Energy gap ; Graphene ; Hybrid structures ; Modulus of elasticity ; Molecular dynamics ; Nanosheets ; Sheets ; Strain ; Tensile strength</subject><ispartof>RSC advances, 2021-10, Vol.11 (56), p.35127-3514</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d7234c306dc42332949ccdc7303dff0a34a6fd045e93db740f1463ab4d41ddac3</citedby><cites>FETCH-LOGICAL-c428t-d7234c306dc42332949ccdc7303dff0a34a6fd045e93db740f1463ab4d41ddac3</cites><orcidid>0000-0003-3094-9885 ; 0000-0001-9660-2142 ; 0000-0002-7603-5141 ; 0000-0003-1221-4228 ; 0000-0002-8901-6724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35493153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima, J. S</creatorcontrib><creatorcontrib>Oliveira, I. S</creatorcontrib><creatorcontrib>Azevedo, S</creatorcontrib><creatorcontrib>Freitas, A</creatorcontrib><creatorcontrib>Bezerra, C. G</creatorcontrib><creatorcontrib>Machado, L. D</creatorcontrib><title>Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Hybrid structures comprised of graphene domains embedded in larger hexagonal boron nitride (h-BN) nanosheets were first synthesized in 2013. However, the existing theoretical investigations on them have only considered relaxed structures. In this work, we use Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the mechanical and electronic properties of this type of nanosheet under strain. Our results reveal that the Young's modulus of the hybrid sheets depends only on the relative concentration of graphene and h-BN in the structure, showing little dependence on the shape of the domain or the size of the structure for a given concentration. Regarding the tensile strength, we obtained higher values using triangular graphene domains. We find that the studied systems can withstand large strain values (between 15% and 22%) before fracture, which always begins at the weaker C-B bonds located at the interface between the two materials. Concerning the electronic properties, we find that by combining composition and strain, we can produce hybrid sheets with band gaps spanning an extensive range of values (between 1.0 eV and 3.5 eV). Our results also show that the band gap depends more on the composition than on the external strain, particularly for structures with low carbon concentration. The combination of atomic-scale thickness, high ultimate strain, and adjustable band gap suggests applications of h-BN nanosheets with graphene domains in wearable electronics. We investigate the mechanical and electronic properties of hBN nanosheets with graphene domains under strain. We find that the structures withstand large strain values and present highly adjustable band gaps, ranging from 1.0 to 3.5 eV.</description><subject>Bonding strength</subject><subject>Boron nitride</subject><subject>Chemistry</subject><subject>Composition</subject><subject>Density functional theory</subject><subject>Domains</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>Hybrid structures</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanosheets</subject><subject>Sheets</subject><subject>Strain</subject><subject>Tensile strength</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LHDEQx4NYVK6-9L0S8EWEa5PNj728COeP1oKlUNrnkE1m3chesia7iv-90bNXNS-Tmfkw-Wa-CH2i5AslTH11NBkiFow2W2ivIlzOKyLV9qv7LtrP-YaUIwWtJN1Bu0xwxahge8j-BNuZ4K3psQkOQw92TLEU8JDiAGn0kHFscRNLFQc_Ju8ABxNi7gDGjO_92OHrZIYOAmAXV8aHjKfgIOE8ppJ9RB9a02fYf4kz9PfbxZ-zy_nVr-8_zpZXc8urxTh3dcW4ZUS6kjNWKa6sdbZmhLm2JYZxI1tHuADFXFNz0lIumWm449Q5Y9kMnaznDlOzAmchlOd7PSS_MulBR-P1207wnb6Od1qRIqBsZIaOXgakeDtBHvXKZwt9bwLEKetKioXkXNS0oIfv0Js4pVC-pyuhFOW1WIhCHa8pm2LOCdqNGEr0k336nP5ePtt3WuCD1_I36D-zCvB5DaRsN93__rNH6_mhGA</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Lima, J. S</creator><creator>Oliveira, I. S</creator><creator>Azevedo, S</creator><creator>Freitas, A</creator><creator>Bezerra, C. G</creator><creator>Machado, L. D</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3094-9885</orcidid><orcidid>https://orcid.org/0000-0001-9660-2142</orcidid><orcidid>https://orcid.org/0000-0002-7603-5141</orcidid><orcidid>https://orcid.org/0000-0003-1221-4228</orcidid><orcidid>https://orcid.org/0000-0002-8901-6724</orcidid></search><sort><creationdate>20211029</creationdate><title>Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain</title><author>Lima, J. S ; Oliveira, I. S ; Azevedo, S ; Freitas, A ; Bezerra, C. G ; Machado, L. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d7234c306dc42332949ccdc7303dff0a34a6fd045e93db740f1463ab4d41ddac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bonding strength</topic><topic>Boron nitride</topic><topic>Chemistry</topic><topic>Composition</topic><topic>Density functional theory</topic><topic>Domains</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>Hybrid structures</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanosheets</topic><topic>Sheets</topic><topic>Strain</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, J. S</creatorcontrib><creatorcontrib>Oliveira, I. S</creatorcontrib><creatorcontrib>Azevedo, S</creatorcontrib><creatorcontrib>Freitas, A</creatorcontrib><creatorcontrib>Bezerra, C. G</creatorcontrib><creatorcontrib>Machado, L. D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, J. S</au><au>Oliveira, I. S</au><au>Azevedo, S</au><au>Freitas, A</au><au>Bezerra, C. G</au><au>Machado, L. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-10-29</date><risdate>2021</risdate><volume>11</volume><issue>56</issue><spage>35127</spage><epage>3514</epage><pages>35127-3514</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Hybrid structures comprised of graphene domains embedded in larger hexagonal boron nitride (h-BN) nanosheets were first synthesized in 2013. However, the existing theoretical investigations on them have only considered relaxed structures. In this work, we use Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate the mechanical and electronic properties of this type of nanosheet under strain. Our results reveal that the Young's modulus of the hybrid sheets depends only on the relative concentration of graphene and h-BN in the structure, showing little dependence on the shape of the domain or the size of the structure for a given concentration. Regarding the tensile strength, we obtained higher values using triangular graphene domains. We find that the studied systems can withstand large strain values (between 15% and 22%) before fracture, which always begins at the weaker C-B bonds located at the interface between the two materials. Concerning the electronic properties, we find that by combining composition and strain, we can produce hybrid sheets with band gaps spanning an extensive range of values (between 1.0 eV and 3.5 eV). Our results also show that the band gap depends more on the composition than on the external strain, particularly for structures with low carbon concentration. The combination of atomic-scale thickness, high ultimate strain, and adjustable band gap suggests applications of h-BN nanosheets with graphene domains in wearable electronics. We investigate the mechanical and electronic properties of hBN nanosheets with graphene domains under strain. We find that the structures withstand large strain values and present highly adjustable band gaps, ranging from 1.0 to 3.5 eV.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35493153</pmid><doi>10.1039/d1ra05831b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3094-9885</orcidid><orcidid>https://orcid.org/0000-0001-9660-2142</orcidid><orcidid>https://orcid.org/0000-0002-7603-5141</orcidid><orcidid>https://orcid.org/0000-0003-1221-4228</orcidid><orcidid>https://orcid.org/0000-0002-8901-6724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-10, Vol.11 (56), p.35127-3514
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9042849
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Bonding strength
Boron nitride
Chemistry
Composition
Density functional theory
Domains
Energy gap
Graphene
Hybrid structures
Modulus of elasticity
Molecular dynamics
Nanosheets
Sheets
Strain
Tensile strength
title Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20electronic%20properties%20of%20boron%20nitride%20nanosheets%20with%20graphene%20domains%20under%20strain&rft.jtitle=RSC%20advances&rft.au=Lima,%20J.%20S&rft.date=2021-10-29&rft.volume=11&rft.issue=56&rft.spage=35127&rft.epage=3514&rft.pages=35127-3514&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05831b&rft_dat=%3Cproquest_pubme%3E2599147585%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599147585&rft_id=info:pmid/35493153&rfr_iscdi=true