Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure

Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-09, Vol.11 (48), p.29877-29886
Hauptverfasser: Sethi, Yogesh A, Kulkarni, Aniruddha K, Ambalkar, Anuradha A, Panmand, Rajendra P, Kulkarni, Milind V, Gosavi, Suresh W, Kale, Bharat B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29886
container_issue 48
container_start_page 29877
container_title RSC advances
container_volume 11
creator Sethi, Yogesh A
Kulkarni, Aniruddha K
Ambalkar, Anuradha A
Panmand, Rajendra P
Kulkarni, Milind V
Gosavi, Suresh W
Kale, Bharat B
description Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.
doi_str_mv 10.1039/d1ra05617d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581179646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-3756f3d11501f6c10966686a5806e2d534b6a784e9ee83c97709cd27f81477323</originalsourceid><addsrcrecordid>eNpdj0tLAzEUhYMottRu_AUDbtyM5nmTbAQpvqDQhboe0pnMTOo0qclMof_eQbtQL1zu4dzDBwehS4JvCGb6tiLRYAFEVidoSjGHnGLQp7_0BM1T2uBxQBAK5BxNmOAKU6mmqH6oa1c66_sshc7ErHNN2-dVdHvrs_ZQxdCMYlwbTe-Cz4bkfJMZn716tuKZNz7Unfmwt000u3bMfVut7W0MqY9D2Q_RXqCz2nTJzo93ht4fH94Wz_ly9fSyuF_mO8pknzMpoGYVIQKTGkqCNQAoMEJhsLQSjK_BSMWttlaxUkuJdVlRWSvCpWSUzdDdD3c3rLe2Ksde0XTFLrqtiYciGFf8_XjXFk3YFxpzrIkYAddHQAyfg019sXWptF1nvA1DKigIkJwojsfo1b_oJgzRj_UKKhQhUgMH9gVTsH-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581179646</pqid></control><display><type>article</type><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</creator><creatorcontrib>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</creatorcontrib><description>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05617d</identifier><identifier>PMID: 35480278</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalytic activity ; Chemistry ; Diffusion rate ; Electromagnetic absorption ; Energy conversion ; Graphene ; Heterostructures ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Hydrogen sulfide ; Low temperature ; Morphology ; Photocatalysis ; Sunlight</subject><ispartof>RSC advances, 2021-09, Vol.11 (48), p.29877-29886</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040915/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040915/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sethi, Yogesh A</creatorcontrib><creatorcontrib>Kulkarni, Aniruddha K</creatorcontrib><creatorcontrib>Ambalkar, Anuradha A</creatorcontrib><creatorcontrib>Panmand, Rajendra P</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Gosavi, Suresh W</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><title>RSC advances</title><description>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</description><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen sulfide</subject><subject>Low temperature</subject><subject>Morphology</subject><subject>Photocatalysis</subject><subject>Sunlight</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLAzEUhYMottRu_AUDbtyM5nmTbAQpvqDQhboe0pnMTOo0qclMof_eQbtQL1zu4dzDBwehS4JvCGb6tiLRYAFEVidoSjGHnGLQp7_0BM1T2uBxQBAK5BxNmOAKU6mmqH6oa1c66_sshc7ErHNN2-dVdHvrs_ZQxdCMYlwbTe-Cz4bkfJMZn716tuKZNz7Unfmwt000u3bMfVut7W0MqY9D2Q_RXqCz2nTJzo93ht4fH94Wz_ly9fSyuF_mO8pknzMpoGYVIQKTGkqCNQAoMEJhsLQSjK_BSMWttlaxUkuJdVlRWSvCpWSUzdDdD3c3rLe2Ksde0XTFLrqtiYciGFf8_XjXFk3YFxpzrIkYAddHQAyfg019sXWptF1nvA1DKigIkJwojsfo1b_oJgzRj_UKKhQhUgMH9gVTsH-V</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Sethi, Yogesh A</creator><creator>Kulkarni, Aniruddha K</creator><creator>Ambalkar, Anuradha A</creator><creator>Panmand, Rajendra P</creator><creator>Kulkarni, Milind V</creator><creator>Gosavi, Suresh W</creator><creator>Kale, Bharat B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210906</creationdate><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><author>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-3756f3d11501f6c10966686a5806e2d534b6a784e9ee83c97709cd27f81477323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen sulfide</topic><topic>Low temperature</topic><topic>Morphology</topic><topic>Photocatalysis</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, Yogesh A</creatorcontrib><creatorcontrib>Kulkarni, Aniruddha K</creatorcontrib><creatorcontrib>Ambalkar, Anuradha A</creatorcontrib><creatorcontrib>Panmand, Rajendra P</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Gosavi, Suresh W</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, Yogesh A</au><au>Kulkarni, Aniruddha K</au><au>Ambalkar, Anuradha A</au><au>Panmand, Rajendra P</au><au>Kulkarni, Milind V</au><au>Gosavi, Suresh W</au><au>Kale, Bharat B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</atitle><jtitle>RSC advances</jtitle><date>2021-09-06</date><risdate>2021</risdate><volume>11</volume><issue>48</issue><spage>29877</spage><epage>29886</epage><pages>29877-29886</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35480278</pmid><doi>10.1039/d1ra05617d</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-09, Vol.11 (48), p.29877-29886
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040915
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Catalytic activity
Chemistry
Diffusion rate
Electromagnetic absorption
Energy conversion
Graphene
Heterostructures
Hydrogen
Hydrogen evolution
Hydrogen production
Hydrogen sulfide
Low temperature
Morphology
Photocatalysis
Sunlight
title Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20solar%20light-driven%20hydrogen%20generation%20using%20an%20Sn3O4%20nanoflake/graphene%20nanoheterostructure&rft.jtitle=RSC%20advances&rft.au=Sethi,%20Yogesh%20A&rft.date=2021-09-06&rft.volume=11&rft.issue=48&rft.spage=29877&rft.epage=29886&rft.pages=29877-29886&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05617d&rft_dat=%3Cproquest_pubme%3E2581179646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581179646&rft_id=info:pmid/35480278&rfr_iscdi=true