Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure
Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-09, Vol.11 (48), p.29877-29886 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29886 |
---|---|
container_issue | 48 |
container_start_page | 29877 |
container_title | RSC advances |
container_volume | 11 |
creator | Sethi, Yogesh A Kulkarni, Aniruddha K Ambalkar, Anuradha A Panmand, Rajendra P Kulkarni, Milind V Gosavi, Suresh W Kale, Bharat B |
description | Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices. |
doi_str_mv | 10.1039/d1ra05617d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581179646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-3756f3d11501f6c10966686a5806e2d534b6a784e9ee83c97709cd27f81477323</originalsourceid><addsrcrecordid>eNpdj0tLAzEUhYMottRu_AUDbtyM5nmTbAQpvqDQhboe0pnMTOo0qclMof_eQbtQL1zu4dzDBwehS4JvCGb6tiLRYAFEVidoSjGHnGLQp7_0BM1T2uBxQBAK5BxNmOAKU6mmqH6oa1c66_sshc7ErHNN2-dVdHvrs_ZQxdCMYlwbTe-Cz4bkfJMZn716tuKZNz7Unfmwt000u3bMfVut7W0MqY9D2Q_RXqCz2nTJzo93ht4fH94Wz_ly9fSyuF_mO8pknzMpoGYVIQKTGkqCNQAoMEJhsLQSjK_BSMWttlaxUkuJdVlRWSvCpWSUzdDdD3c3rLe2Ksde0XTFLrqtiYciGFf8_XjXFk3YFxpzrIkYAddHQAyfg019sXWptF1nvA1DKigIkJwojsfo1b_oJgzRj_UKKhQhUgMH9gVTsH-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581179646</pqid></control><display><type>article</type><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</creator><creatorcontrib>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</creatorcontrib><description>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05617d</identifier><identifier>PMID: 35480278</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalytic activity ; Chemistry ; Diffusion rate ; Electromagnetic absorption ; Energy conversion ; Graphene ; Heterostructures ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Hydrogen sulfide ; Low temperature ; Morphology ; Photocatalysis ; Sunlight</subject><ispartof>RSC advances, 2021-09, Vol.11 (48), p.29877-29886</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040915/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040915/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sethi, Yogesh A</creatorcontrib><creatorcontrib>Kulkarni, Aniruddha K</creatorcontrib><creatorcontrib>Ambalkar, Anuradha A</creatorcontrib><creatorcontrib>Panmand, Rajendra P</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Gosavi, Suresh W</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><title>RSC advances</title><description>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</description><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen sulfide</subject><subject>Low temperature</subject><subject>Morphology</subject><subject>Photocatalysis</subject><subject>Sunlight</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLAzEUhYMottRu_AUDbtyM5nmTbAQpvqDQhboe0pnMTOo0qclMof_eQbtQL1zu4dzDBwehS4JvCGb6tiLRYAFEVidoSjGHnGLQp7_0BM1T2uBxQBAK5BxNmOAKU6mmqH6oa1c66_sshc7ErHNN2-dVdHvrs_ZQxdCMYlwbTe-Cz4bkfJMZn716tuKZNz7Unfmwt000u3bMfVut7W0MqY9D2Q_RXqCz2nTJzo93ht4fH94Wz_ly9fSyuF_mO8pknzMpoGYVIQKTGkqCNQAoMEJhsLQSjK_BSMWttlaxUkuJdVlRWSvCpWSUzdDdD3c3rLe2Ksde0XTFLrqtiYciGFf8_XjXFk3YFxpzrIkYAddHQAyfg019sXWptF1nvA1DKigIkJwojsfo1b_oJgzRj_UKKhQhUgMH9gVTsH-V</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Sethi, Yogesh A</creator><creator>Kulkarni, Aniruddha K</creator><creator>Ambalkar, Anuradha A</creator><creator>Panmand, Rajendra P</creator><creator>Kulkarni, Milind V</creator><creator>Gosavi, Suresh W</creator><creator>Kale, Bharat B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210906</creationdate><title>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</title><author>Sethi, Yogesh A ; Kulkarni, Aniruddha K ; Ambalkar, Anuradha A ; Panmand, Rajendra P ; Kulkarni, Milind V ; Gosavi, Suresh W ; Kale, Bharat B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-3756f3d11501f6c10966686a5806e2d534b6a784e9ee83c97709cd27f81477323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen sulfide</topic><topic>Low temperature</topic><topic>Morphology</topic><topic>Photocatalysis</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethi, Yogesh A</creatorcontrib><creatorcontrib>Kulkarni, Aniruddha K</creatorcontrib><creatorcontrib>Ambalkar, Anuradha A</creatorcontrib><creatorcontrib>Panmand, Rajendra P</creatorcontrib><creatorcontrib>Kulkarni, Milind V</creatorcontrib><creatorcontrib>Gosavi, Suresh W</creatorcontrib><creatorcontrib>Kale, Bharat B</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethi, Yogesh A</au><au>Kulkarni, Aniruddha K</au><au>Ambalkar, Anuradha A</au><au>Panmand, Rajendra P</au><au>Kulkarni, Milind V</au><au>Gosavi, Suresh W</au><au>Kale, Bharat B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure</atitle><jtitle>RSC advances</jtitle><date>2021-09-06</date><risdate>2021</risdate><volume>11</volume><issue>48</issue><spage>29877</spage><epage>29886</epage><pages>29877-29886</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35480278</pmid><doi>10.1039/d1ra05617d</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2021-09, Vol.11 (48), p.29877-29886 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9040915 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Catalytic activity Chemistry Diffusion rate Electromagnetic absorption Energy conversion Graphene Heterostructures Hydrogen Hydrogen evolution Hydrogen production Hydrogen sulfide Low temperature Morphology Photocatalysis Sunlight |
title | Efficient solar light-driven hydrogen generation using an Sn3O4 nanoflake/graphene nanoheterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20solar%20light-driven%20hydrogen%20generation%20using%20an%20Sn3O4%20nanoflake/graphene%20nanoheterostructure&rft.jtitle=RSC%20advances&rft.au=Sethi,%20Yogesh%20A&rft.date=2021-09-06&rft.volume=11&rft.issue=48&rft.spage=29877&rft.epage=29886&rft.pages=29877-29886&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05617d&rft_dat=%3Cproquest_pubme%3E2581179646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581179646&rft_id=info:pmid/35480278&rfr_iscdi=true |