Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment

Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2022-05, Vol.16 (5), p.1284-1293
Hauptverfasser: Zhang, Peng, Mao, Daqing, Gao, Huihui, Zheng, Liyang, Chen, Zeyou, Gao, Yuting, Duan, Yitao, Guo, Jianhua, Luo, Yi, Ren, Hongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1293
container_issue 5
container_start_page 1284
container_title The ISME Journal
container_volume 16
creator Zhang, Peng
Mao, Daqing
Gao, Huihui
Zheng, Liyang
Chen, Zeyou
Gao, Yuting
Duan, Yitao
Guo, Jianhua
Luo, Yi
Ren, Hongqiang
description Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC , proQ , and hcaT ) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus ( fimA and fimH ) and the surface adhesin gene ( flu ) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B ( acrA, acrB ), outer-membrane protein ( tolC ), multidrug-resistance protein ( mdtM ), and macrolide export proteins A and B ( macA , macB )) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein ( traF ) and ( trbB ), replication protein gene ( trfA ), beta-lactamase TEM precursor ( bla TEM ), aminoglycoside 3'-phosphotransferase ( aphA ) and tetracycline resistance protein A ( tetA )) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.
doi_str_mv 10.1038/s41396-021-01171-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610081494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8bf07de2fcba04bce173d47c45822efcac867c6c048242589d74c9057231d8b43</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS1UBJT2D3BAlnrpJWA7TpxckKoVLUgr9dKerYnjLEaJvdgO2q3Ef8dplgV66MmW5s03b-YhdEbJBSV5dRk4zesyI4xmhFJBs80BOqGioJnIBfmw_5fsGH0M4Z6QQpSlOELHOa8TgNcn6GnhemfNH4jGWew6vBojHozyrjEuAm62eN1DGEybKfB-a-wKN6Ci9gawCbgDZXoTIep20upH148TCvwWQwvrOIOjw2CjmZhG4eg1xEHb-AkddtAH_Xn3nqLf369_LW6y5c8ft4tvy0xxwWNWNR0RrWadaoDwRmkq8pYLxYuKMd0pUFUpVKkIrxhnRVW3gqs6bcty2lYNz0_R1cxdj82gW5VGe-jl2pshGZUOjHxfseZOrtyjnM4kGEmArzuAdw-jDlEOJijd92C1G4NkJSWkoryeZn35R3rvRm_TeklV8LoQyX1SsVmVLh2C193eDCVySlfO6cqUrvybrtykpvO3a-xbXuJMgnwWhFSyK-1fZ_8H-wx1ubSK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654957173</pqid></control><display><type>article</type><title>Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Peng ; Mao, Daqing ; Gao, Huihui ; Zheng, Liyang ; Chen, Zeyou ; Gao, Yuting ; Duan, Yitao ; Guo, Jianhua ; Luo, Yi ; Ren, Hongqiang</creator><creatorcontrib>Zhang, Peng ; Mao, Daqing ; Gao, Huihui ; Zheng, Liyang ; Chen, Zeyou ; Gao, Yuting ; Duan, Yitao ; Guo, Jianhua ; Luo, Yi ; Ren, Hongqiang</creatorcontrib><description>Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC , proQ , and hcaT ) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus ( fimA and fimH ) and the surface adhesin gene ( flu ) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B ( acrA, acrB ), outer-membrane protein ( tolC ), multidrug-resistance protein ( mdtM ), and macrolide export proteins A and B ( macA , macB )) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein ( traF ) and ( trbB ), replication protein gene ( trfA ), beta-lactamase TEM precursor ( bla TEM ), aminoglycoside 3'-phosphotransferase ( aphA ) and tetracycline resistance protein A ( tetA )) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-021-01171-x</identifier><identifier>PMID: 34903849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/23 ; 42/44 ; 45/29 ; 45/43 ; 45/77 ; 45/91 ; 631/181/735 ; 631/326/22/1290 ; 64/60 ; Acriflavine ; Adaptation ; Aminoglycoside antibiotics ; Aminoglycosides ; Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Biofilms ; Biomedical and Life Sciences ; Colonization ; Drug resistance ; Drug Resistance, Multiple, Bacterial ; E coli ; Ecological adaptation ; Ecology ; Efflux ; Escherichia coli - genetics ; Escherichia coli K12 - genetics ; Escherichia coli Proteins - genetics ; Evolution ; Evolutionary Biology ; Gastrointestinal Microbiome ; Genes ; Indoles ; Intestinal microflora ; Life Sciences ; Membrane proteins ; Mice ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiota ; Multidrug resistance ; Multidrug Resistance-Associated Proteins - genetics ; Mutation ; Phosphotransferase ; Plasmids ; Plasmids - genetics ; Population density ; Protein A ; Protein transport ; Proteins ; RNA-Binding Proteins - genetics ; Single-nucleotide polymorphism ; Transcription ; Tryptophan 2,3-dioxygenase ; β Lactamase</subject><ispartof>The ISME Journal, 2022-05, Vol.16 (5), p.1284-1293</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8bf07de2fcba04bce173d47c45822efcac867c6c048242589d74c9057231d8b43</citedby><cites>FETCH-LOGICAL-c474t-8bf07de2fcba04bce173d47c45822efcac867c6c048242589d74c9057231d8b43</cites><orcidid>0000-0002-3109-2767 ; 0000-0003-0313-0129 ; 0000-0001-7707-708X ; 0000-0002-1371-9917 ; 0000-0002-7943-0657 ; 0000-0002-4732-9175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038720/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038720/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34903849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Mao, Daqing</creatorcontrib><creatorcontrib>Gao, Huihui</creatorcontrib><creatorcontrib>Zheng, Liyang</creatorcontrib><creatorcontrib>Chen, Zeyou</creatorcontrib><creatorcontrib>Gao, Yuting</creatorcontrib><creatorcontrib>Duan, Yitao</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Ren, Hongqiang</creatorcontrib><title>Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC , proQ , and hcaT ) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus ( fimA and fimH ) and the surface adhesin gene ( flu ) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B ( acrA, acrB ), outer-membrane protein ( tolC ), multidrug-resistance protein ( mdtM ), and macrolide export proteins A and B ( macA , macB )) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein ( traF ) and ( trbB ), replication protein gene ( trfA ), beta-lactamase TEM precursor ( bla TEM ), aminoglycoside 3'-phosphotransferase ( aphA ) and tetracycline resistance protein A ( tetA )) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.</description><subject>38/23</subject><subject>42/44</subject><subject>45/29</subject><subject>45/43</subject><subject>45/77</subject><subject>45/91</subject><subject>631/181/735</subject><subject>631/326/22/1290</subject><subject>64/60</subject><subject>Acriflavine</subject><subject>Adaptation</subject><subject>Aminoglycoside antibiotics</subject><subject>Aminoglycosides</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Colonization</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>E coli</subject><subject>Ecological adaptation</subject><subject>Ecology</subject><subject>Efflux</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Gastrointestinal Microbiome</subject><subject>Genes</subject><subject>Indoles</subject><subject>Intestinal microflora</subject><subject>Life Sciences</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Multidrug resistance</subject><subject>Multidrug Resistance-Associated Proteins - genetics</subject><subject>Mutation</subject><subject>Phosphotransferase</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Population density</subject><subject>Protein A</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Transcription</subject><subject>Tryptophan 2,3-dioxygenase</subject><subject>β Lactamase</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFP3DAQhS1UBJT2D3BAlnrpJWA7TpxckKoVLUgr9dKerYnjLEaJvdgO2q3Ef8dplgV66MmW5s03b-YhdEbJBSV5dRk4zesyI4xmhFJBs80BOqGioJnIBfmw_5fsGH0M4Z6QQpSlOELHOa8TgNcn6GnhemfNH4jGWew6vBojHozyrjEuAm62eN1DGEybKfB-a-wKN6Ci9gawCbgDZXoTIep20upH148TCvwWQwvrOIOjw2CjmZhG4eg1xEHb-AkddtAH_Xn3nqLf369_LW6y5c8ft4tvy0xxwWNWNR0RrWadaoDwRmkq8pYLxYuKMd0pUFUpVKkIrxhnRVW3gqs6bcty2lYNz0_R1cxdj82gW5VGe-jl2pshGZUOjHxfseZOrtyjnM4kGEmArzuAdw-jDlEOJijd92C1G4NkJSWkoryeZn35R3rvRm_TeklV8LoQyX1SsVmVLh2C193eDCVySlfO6cqUrvybrtykpvO3a-xbXuJMgnwWhFSyK-1fZ_8H-wx1ubSK</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, Peng</creator><creator>Mao, Daqing</creator><creator>Gao, Huihui</creator><creator>Zheng, Liyang</creator><creator>Chen, Zeyou</creator><creator>Gao, Yuting</creator><creator>Duan, Yitao</creator><creator>Guo, Jianhua</creator><creator>Luo, Yi</creator><creator>Ren, Hongqiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3109-2767</orcidid><orcidid>https://orcid.org/0000-0003-0313-0129</orcidid><orcidid>https://orcid.org/0000-0001-7707-708X</orcidid><orcidid>https://orcid.org/0000-0002-1371-9917</orcidid><orcidid>https://orcid.org/0000-0002-7943-0657</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid></search><sort><creationdate>20220501</creationdate><title>Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment</title><author>Zhang, Peng ; Mao, Daqing ; Gao, Huihui ; Zheng, Liyang ; Chen, Zeyou ; Gao, Yuting ; Duan, Yitao ; Guo, Jianhua ; Luo, Yi ; Ren, Hongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8bf07de2fcba04bce173d47c45822efcac867c6c048242589d74c9057231d8b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>38/23</topic><topic>42/44</topic><topic>45/29</topic><topic>45/43</topic><topic>45/77</topic><topic>45/91</topic><topic>631/181/735</topic><topic>631/326/22/1290</topic><topic>64/60</topic><topic>Acriflavine</topic><topic>Adaptation</topic><topic>Aminoglycoside antibiotics</topic><topic>Aminoglycosides</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Colonization</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>E coli</topic><topic>Ecological adaptation</topic><topic>Ecology</topic><topic>Efflux</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Gastrointestinal Microbiome</topic><topic>Genes</topic><topic>Indoles</topic><topic>Intestinal microflora</topic><topic>Life Sciences</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Multidrug resistance</topic><topic>Multidrug Resistance-Associated Proteins - genetics</topic><topic>Mutation</topic><topic>Phosphotransferase</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Population density</topic><topic>Protein A</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Transcription</topic><topic>Tryptophan 2,3-dioxygenase</topic><topic>β Lactamase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Mao, Daqing</creatorcontrib><creatorcontrib>Gao, Huihui</creatorcontrib><creatorcontrib>Zheng, Liyang</creatorcontrib><creatorcontrib>Chen, Zeyou</creatorcontrib><creatorcontrib>Gao, Yuting</creatorcontrib><creatorcontrib>Duan, Yitao</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Ren, Hongqiang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Mao, Daqing</au><au>Gao, Huihui</au><au>Zheng, Liyang</au><au>Chen, Zeyou</au><au>Gao, Yuting</au><au>Duan, Yitao</au><au>Guo, Jianhua</au><au>Luo, Yi</au><au>Ren, Hongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>16</volume><issue>5</issue><spage>1284</spage><epage>1293</epage><pages>1284-1293</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC , proQ , and hcaT ) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus ( fimA and fimH ) and the surface adhesin gene ( flu ) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B ( acrA, acrB ), outer-membrane protein ( tolC ), multidrug-resistance protein ( mdtM ), and macrolide export proteins A and B ( macA , macB )) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein ( traF ) and ( trbB ), replication protein gene ( trfA ), beta-lactamase TEM precursor ( bla TEM ), aminoglycoside 3'-phosphotransferase ( aphA ) and tetracycline resistance protein A ( tetA )) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34903849</pmid><doi>10.1038/s41396-021-01171-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3109-2767</orcidid><orcidid>https://orcid.org/0000-0003-0313-0129</orcidid><orcidid>https://orcid.org/0000-0001-7707-708X</orcidid><orcidid>https://orcid.org/0000-0002-1371-9917</orcidid><orcidid>https://orcid.org/0000-0002-7943-0657</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2022-05, Vol.16 (5), p.1284-1293
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038720
source Oxford Journals Open Access Collection; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 38/23
42/44
45/29
45/43
45/77
45/91
631/181/735
631/326/22/1290
64/60
Acriflavine
Adaptation
Aminoglycoside antibiotics
Aminoglycosides
Animals
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteria
Biofilms
Biomedical and Life Sciences
Colonization
Drug resistance
Drug Resistance, Multiple, Bacterial
E coli
Ecological adaptation
Ecology
Efflux
Escherichia coli - genetics
Escherichia coli K12 - genetics
Escherichia coli Proteins - genetics
Evolution
Evolutionary Biology
Gastrointestinal Microbiome
Genes
Indoles
Intestinal microflora
Life Sciences
Membrane proteins
Mice
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiota
Multidrug resistance
Multidrug Resistance-Associated Proteins - genetics
Mutation
Phosphotransferase
Plasmids
Plasmids - genetics
Population density
Protein A
Protein transport
Proteins
RNA-Binding Proteins - genetics
Single-nucleotide polymorphism
Transcription
Tryptophan 2,3-dioxygenase
β Lactamase
title Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colonization%20of%20gut%20microbiota%20by%20plasmid-carrying%20bacteria%20is%20facilitated%20by%20evolutionary%20adaptation%20to%20antibiotic%20treatment&rft.jtitle=The%20ISME%20Journal&rft.au=Zhang,%20Peng&rft.date=2022-05-01&rft.volume=16&rft.issue=5&rft.spage=1284&rft.epage=1293&rft.pages=1284-1293&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-021-01171-x&rft_dat=%3Cproquest_pubme%3E2610081494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654957173&rft_id=info:pmid/34903849&rfr_iscdi=true