Machine Learning for Healthcare Wearable Devices: The Big Picture

Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2022-04, Vol.2022, p.4653923-25
Hauptverfasser: Sabry, Farida, Eltaras, Tamer, Labda, Wadha, Alzoubi, Khawla, Malluhi, Qutaibah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 4653923
container_title Journal of healthcare engineering
container_volume 2022
creator Sabry, Farida
Eltaras, Tamer
Labda, Wadha
Alzoubi, Khawla
Malluhi, Qutaibah
description Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can play a great role in elderly care and patient’s health monitoring and diagnostics. With the great technological advances in medical sensors and miniaturization of electronic chips in the recent five years, more applications are being researched and developed for wearable devices. Despite the remarkable growth of using smart watches and other wearable devices, a few of these massive research efforts for machine learning applications have found their way to market. In this study, a review of the different areas of the recent machine learning research for healthcare wearable devices is presented. Different challenges facing machine learning applications on wearable devices are discussed. Potential solutions from the literature are presented, and areas open for improvement and further research are highlighted.
doi_str_mv 10.1155/2022/4653923
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656741928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-623a92309061131f7c7960e40a399916d6aca4e64bfa47da46a8188a5bbd78093</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4MoKnM3z9KjoHX5atp4EOa3MNHDxGN4m77dIl2rSav439uxKXoxl4Q3D7_3x0PIPqMnjCXJiFPOR1IlQnOxQXY5lTTmgurN7zfXyQ4ZhvBC-yO0kExskx2RyIwyqXbJ-B7s3NUYTRB87epZVDY-ukWo2rkFj9FzP4e8wugS353FcBpN5xidu1n06GzbedwjWyVUAYfre0Cerq-mF7fx5OHm7mI8ia3MVBsrLkAvq1HFmGBlalOtKEoKQmvNVKHAgkQl8xJkWoBUkLEsgyTPizSjWgzI2Sr3tcsXWFisWw-VefVuAf7TNODM35_azc2seTeaikykSR9wuA7wzVuHoTULFyxWFdTYdMFwlahUMs2zHj1eodY3IXgsf9YwapbizVK8WYvv8YPf1X7gb809cLQCetUFfLj_474AyXmI9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656741928</pqid></control><display><type>article</type><title>Machine Learning for Healthcare Wearable Devices: The Big Picture</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sabry, Farida ; Eltaras, Tamer ; Labda, Wadha ; Alzoubi, Khawla ; Malluhi, Qutaibah</creator><contributor>Wu, Yuxiang</contributor><creatorcontrib>Sabry, Farida ; Eltaras, Tamer ; Labda, Wadha ; Alzoubi, Khawla ; Malluhi, Qutaibah ; Wu, Yuxiang</creatorcontrib><description>Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can play a great role in elderly care and patient’s health monitoring and diagnostics. With the great technological advances in medical sensors and miniaturization of electronic chips in the recent five years, more applications are being researched and developed for wearable devices. Despite the remarkable growth of using smart watches and other wearable devices, a few of these massive research efforts for machine learning applications have found their way to market. In this study, a review of the different areas of the recent machine learning research for healthcare wearable devices is presented. Different challenges facing machine learning applications on wearable devices are discussed. Potential solutions from the literature are presented, and areas open for improvement and further research are highlighted.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2022/4653923</identifier><identifier>PMID: 35480146</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Aged ; Artificial Intelligence ; Delivery of Health Care ; Health Facilities ; Humans ; Machine Learning ; Review ; Wearable Electronic Devices</subject><ispartof>Journal of healthcare engineering, 2022-04, Vol.2022, p.4653923-25</ispartof><rights>Copyright © 2022 Farida Sabry et al.</rights><rights>Copyright © 2022 Farida Sabry et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-623a92309061131f7c7960e40a399916d6aca4e64bfa47da46a8188a5bbd78093</citedby><cites>FETCH-LOGICAL-c486t-623a92309061131f7c7960e40a399916d6aca4e64bfa47da46a8188a5bbd78093</cites><orcidid>0000-0002-8664-9091 ; 0000-0003-2849-0569 ; 0000-0001-6097-2395 ; 0000-0002-2797-2673 ; 0000-0001-5639-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038375/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038375/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35480146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wu, Yuxiang</contributor><creatorcontrib>Sabry, Farida</creatorcontrib><creatorcontrib>Eltaras, Tamer</creatorcontrib><creatorcontrib>Labda, Wadha</creatorcontrib><creatorcontrib>Alzoubi, Khawla</creatorcontrib><creatorcontrib>Malluhi, Qutaibah</creatorcontrib><title>Machine Learning for Healthcare Wearable Devices: The Big Picture</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can play a great role in elderly care and patient’s health monitoring and diagnostics. With the great technological advances in medical sensors and miniaturization of electronic chips in the recent five years, more applications are being researched and developed for wearable devices. Despite the remarkable growth of using smart watches and other wearable devices, a few of these massive research efforts for machine learning applications have found their way to market. In this study, a review of the different areas of the recent machine learning research for healthcare wearable devices is presented. Different challenges facing machine learning applications on wearable devices are discussed. Potential solutions from the literature are presented, and areas open for improvement and further research are highlighted.</description><subject>Aged</subject><subject>Artificial Intelligence</subject><subject>Delivery of Health Care</subject><subject>Health Facilities</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Review</subject><subject>Wearable Electronic Devices</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYh4MoKnM3z9KjoHX5atp4EOa3MNHDxGN4m77dIl2rSav439uxKXoxl4Q3D7_3x0PIPqMnjCXJiFPOR1IlQnOxQXY5lTTmgurN7zfXyQ4ZhvBC-yO0kExskx2RyIwyqXbJ-B7s3NUYTRB87epZVDY-ukWo2rkFj9FzP4e8wugS353FcBpN5xidu1n06GzbedwjWyVUAYfre0Cerq-mF7fx5OHm7mI8ia3MVBsrLkAvq1HFmGBlalOtKEoKQmvNVKHAgkQl8xJkWoBUkLEsgyTPizSjWgzI2Sr3tcsXWFisWw-VefVuAf7TNODM35_azc2seTeaikykSR9wuA7wzVuHoTULFyxWFdTYdMFwlahUMs2zHj1eodY3IXgsf9YwapbizVK8WYvv8YPf1X7gb809cLQCetUFfLj_474AyXmI9Q</recordid><startdate>20220418</startdate><enddate>20220418</enddate><creator>Sabry, Farida</creator><creator>Eltaras, Tamer</creator><creator>Labda, Wadha</creator><creator>Alzoubi, Khawla</creator><creator>Malluhi, Qutaibah</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8664-9091</orcidid><orcidid>https://orcid.org/0000-0003-2849-0569</orcidid><orcidid>https://orcid.org/0000-0001-6097-2395</orcidid><orcidid>https://orcid.org/0000-0002-2797-2673</orcidid><orcidid>https://orcid.org/0000-0001-5639-983X</orcidid></search><sort><creationdate>20220418</creationdate><title>Machine Learning for Healthcare Wearable Devices: The Big Picture</title><author>Sabry, Farida ; Eltaras, Tamer ; Labda, Wadha ; Alzoubi, Khawla ; Malluhi, Qutaibah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-623a92309061131f7c7960e40a399916d6aca4e64bfa47da46a8188a5bbd78093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Artificial Intelligence</topic><topic>Delivery of Health Care</topic><topic>Health Facilities</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Review</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabry, Farida</creatorcontrib><creatorcontrib>Eltaras, Tamer</creatorcontrib><creatorcontrib>Labda, Wadha</creatorcontrib><creatorcontrib>Alzoubi, Khawla</creatorcontrib><creatorcontrib>Malluhi, Qutaibah</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabry, Farida</au><au>Eltaras, Tamer</au><au>Labda, Wadha</au><au>Alzoubi, Khawla</au><au>Malluhi, Qutaibah</au><au>Wu, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Healthcare Wearable Devices: The Big Picture</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2022-04-18</date><risdate>2022</risdate><volume>2022</volume><spage>4653923</spage><epage>25</epage><pages>4653923-25</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can play a great role in elderly care and patient’s health monitoring and diagnostics. With the great technological advances in medical sensors and miniaturization of electronic chips in the recent five years, more applications are being researched and developed for wearable devices. Despite the remarkable growth of using smart watches and other wearable devices, a few of these massive research efforts for machine learning applications have found their way to market. In this study, a review of the different areas of the recent machine learning research for healthcare wearable devices is presented. Different challenges facing machine learning applications on wearable devices are discussed. Potential solutions from the literature are presented, and areas open for improvement and further research are highlighted.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>35480146</pmid><doi>10.1155/2022/4653923</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8664-9091</orcidid><orcidid>https://orcid.org/0000-0003-2849-0569</orcidid><orcidid>https://orcid.org/0000-0001-6097-2395</orcidid><orcidid>https://orcid.org/0000-0002-2797-2673</orcidid><orcidid>https://orcid.org/0000-0001-5639-983X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2022-04, Vol.2022, p.4653923-25
issn 2040-2295
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038375
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Aged
Artificial Intelligence
Delivery of Health Care
Health Facilities
Humans
Machine Learning
Review
Wearable Electronic Devices
title Machine Learning for Healthcare Wearable Devices: The Big Picture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Healthcare%20Wearable%20Devices:%20The%20Big%20Picture&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Sabry,%20Farida&rft.date=2022-04-18&rft.volume=2022&rft.spage=4653923&rft.epage=25&rft.pages=4653923-25&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2022/4653923&rft_dat=%3Cproquest_pubme%3E2656741928%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656741928&rft_id=info:pmid/35480146&rfr_iscdi=true