The importance of warm habitat to the growth regime of cold-water fishes
A common goal of biological adaptation planning is to identify and prioritize locations that remain suitably cool during the summer. This implicitly devalues areas that are ephemerally warm, even if they are suitable most of the year for mobile animals. Here we develop an alternative conceptual fram...
Gespeichert in:
Veröffentlicht in: | Nature climate change 2021-03, Vol.11 (4), p.354-361 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 4 |
container_start_page | 354 |
container_title | Nature climate change |
container_volume | 11 |
creator | Armstrong, Jonathan B. Fullerton, Aimee H. Jordan, Chris E. Ebersole, Joseph L. Bellmore, J. Ryan Arismendi, Ivan Penaluna, Brooke E. Reeves, Gordon H. |
description | A common goal of biological adaptation planning is to identify and prioritize locations that remain suitably cool during the summer. This implicitly devalues areas that are ephemerally warm, even if they are suitable most of the year for mobile animals. Here we develop an alternative conceptual framework, the growth regime, which considers seasonal and landscape variation in physiological performance, focusing on riverine fish. Using temperature models for 14 river basins, we show that growth opportunities propagate up and down river networks on a seasonal basis, and that downstream habitats that are suboptimally warm in summer may actually provide the majority of growth potential expressed annually. We demonstrate with an agent-based simulation that the shoulder-season use of warmer downstream habitats can fuel annual fish production. Our work reveals a synergy between cold and warm habitats that could be fundamental to support cold-water fisheries, and highlights the risk in conservation strategies that underappreciate warm habitats.
Modelling riverine fish growth across warm and cool sections of a river network, the authors demonstrate that habitats that are suboptimally warm in summer may actually provide the majority of growth potential. This highlights a risk in conservation strategies that devalue ephemerally warm habitats. |
doi_str_mv | 10.1038/s41558-021-00994-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9037341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507806834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-620b21659150b05fda30ff8dfa7cdb6326e4ad54c6c11b2dddd62077b4820df23</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoKuofcCEFN26qeSfdCCLqCIIbBXchTZNppW3GJOMw_97o6PhYeDcJud85yc0B4BDBUwSJPIsUMSZLiFEJYVXRcrkBdpHIR1xUcnO9l0874CDGZ5hLIE54tQ12CKOCIcx2weShtUU3zHxIejS28K5Y6DAUra67pFORfJEyMQ1-kdoi2Gk3fEDG90250MmGwnWxtXEfbDndR3vwue6Bx-urh8tJeXd_c3t5cVcaRmEqOYY1RpxViMEaMtdoAp2TjdPCNDUnmFuqG0YNNwjVuMmVJULUVGLYOEz2wPnKdzavB9sYO6agezUL3aDDUnndqd-dsWvV1L-qChJBKMoGJ58Gwb_MbUxq6KKxfa9H6-dRYc44qmT-qowe_0Gf_TyMeTyFGRQScklopvCKMsHHGKxbPwZB9Z6VWmWlclbqIyu1zKKjn2OsJV_JZICsgJhb49SG77v_sX0DkEygJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507806834</pqid></control><display><type>article</type><title>The importance of warm habitat to the growth regime of cold-water fishes</title><source>SpringerLink Journals</source><source>Nature</source><creator>Armstrong, Jonathan B. ; Fullerton, Aimee H. ; Jordan, Chris E. ; Ebersole, Joseph L. ; Bellmore, J. Ryan ; Arismendi, Ivan ; Penaluna, Brooke E. ; Reeves, Gordon H.</creator><creatorcontrib>Armstrong, Jonathan B. ; Fullerton, Aimee H. ; Jordan, Chris E. ; Ebersole, Joseph L. ; Bellmore, J. Ryan ; Arismendi, Ivan ; Penaluna, Brooke E. ; Reeves, Gordon H.</creatorcontrib><description>A common goal of biological adaptation planning is to identify and prioritize locations that remain suitably cool during the summer. This implicitly devalues areas that are ephemerally warm, even if they are suitable most of the year for mobile animals. Here we develop an alternative conceptual framework, the growth regime, which considers seasonal and landscape variation in physiological performance, focusing on riverine fish. Using temperature models for 14 river basins, we show that growth opportunities propagate up and down river networks on a seasonal basis, and that downstream habitats that are suboptimally warm in summer may actually provide the majority of growth potential expressed annually. We demonstrate with an agent-based simulation that the shoulder-season use of warmer downstream habitats can fuel annual fish production. Our work reveals a synergy between cold and warm habitats that could be fundamental to support cold-water fisheries, and highlights the risk in conservation strategies that underappreciate warm habitats.
Modelling riverine fish growth across warm and cool sections of a river network, the authors demonstrate that habitats that are suboptimally warm in summer may actually provide the majority of growth potential. This highlights a risk in conservation strategies that devalue ephemerally warm habitats.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-021-00994-y</identifier><identifier>PMID: 35475125</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158 ; 631/158/2165 ; 631/158/856 ; 704/286 ; 706/2805 ; Climate Change ; Climate Change/Climate Change Impacts ; Cold water ; Conservation ; Earth and Environmental Science ; Environment ; Environmental Law/Policy/Ecojustice ; Fish ; Fisheries ; Growth ; Habitats ; River basins ; River networks ; Rivers ; Seasons ; Summer ; Water temperature</subject><ispartof>Nature climate change, 2021-03, Vol.11 (4), p.354-361</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-620b21659150b05fda30ff8dfa7cdb6326e4ad54c6c11b2dddd62077b4820df23</citedby><cites>FETCH-LOGICAL-c540t-620b21659150b05fda30ff8dfa7cdb6326e4ad54c6c11b2dddd62077b4820df23</cites><orcidid>0000-0002-5581-3434 ; 0000-0002-8774-9350 ; 0000-0001-7215-770X ; 0000-0003-1050-1995 ; 0000-0003-3360-0523 ; 0000-0002-1557-3624 ; 0000-0002-5140-6460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-021-00994-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-021-00994-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35475125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, Jonathan B.</creatorcontrib><creatorcontrib>Fullerton, Aimee H.</creatorcontrib><creatorcontrib>Jordan, Chris E.</creatorcontrib><creatorcontrib>Ebersole, Joseph L.</creatorcontrib><creatorcontrib>Bellmore, J. Ryan</creatorcontrib><creatorcontrib>Arismendi, Ivan</creatorcontrib><creatorcontrib>Penaluna, Brooke E.</creatorcontrib><creatorcontrib>Reeves, Gordon H.</creatorcontrib><title>The importance of warm habitat to the growth regime of cold-water fishes</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><addtitle>Nat Clim Chang</addtitle><description>A common goal of biological adaptation planning is to identify and prioritize locations that remain suitably cool during the summer. This implicitly devalues areas that are ephemerally warm, even if they are suitable most of the year for mobile animals. Here we develop an alternative conceptual framework, the growth regime, which considers seasonal and landscape variation in physiological performance, focusing on riverine fish. Using temperature models for 14 river basins, we show that growth opportunities propagate up and down river networks on a seasonal basis, and that downstream habitats that are suboptimally warm in summer may actually provide the majority of growth potential expressed annually. We demonstrate with an agent-based simulation that the shoulder-season use of warmer downstream habitats can fuel annual fish production. Our work reveals a synergy between cold and warm habitats that could be fundamental to support cold-water fisheries, and highlights the risk in conservation strategies that underappreciate warm habitats.
Modelling riverine fish growth across warm and cool sections of a river network, the authors demonstrate that habitats that are suboptimally warm in summer may actually provide the majority of growth potential. This highlights a risk in conservation strategies that devalue ephemerally warm habitats.</description><subject>631/158</subject><subject>631/158/2165</subject><subject>631/158/856</subject><subject>704/286</subject><subject>706/2805</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Cold water</subject><subject>Conservation</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Growth</subject><subject>Habitats</subject><subject>River basins</subject><subject>River networks</subject><subject>Rivers</subject><subject>Seasons</subject><subject>Summer</subject><subject>Water temperature</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxDAUhYMoKuofcCEFN26qeSfdCCLqCIIbBXchTZNppW3GJOMw_97o6PhYeDcJud85yc0B4BDBUwSJPIsUMSZLiFEJYVXRcrkBdpHIR1xUcnO9l0874CDGZ5hLIE54tQ12CKOCIcx2weShtUU3zHxIejS28K5Y6DAUra67pFORfJEyMQ1-kdoi2Gk3fEDG90250MmGwnWxtXEfbDndR3vwue6Bx-urh8tJeXd_c3t5cVcaRmEqOYY1RpxViMEaMtdoAp2TjdPCNDUnmFuqG0YNNwjVuMmVJULUVGLYOEz2wPnKdzavB9sYO6agezUL3aDDUnndqd-dsWvV1L-qChJBKMoGJ58Gwb_MbUxq6KKxfa9H6-dRYc44qmT-qowe_0Gf_TyMeTyFGRQScklopvCKMsHHGKxbPwZB9Z6VWmWlclbqIyu1zKKjn2OsJV_JZICsgJhb49SG77v_sX0DkEygJw</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Armstrong, Jonathan B.</creator><creator>Fullerton, Aimee H.</creator><creator>Jordan, Chris E.</creator><creator>Ebersole, Joseph L.</creator><creator>Bellmore, J. Ryan</creator><creator>Arismendi, Ivan</creator><creator>Penaluna, Brooke E.</creator><creator>Reeves, Gordon H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5581-3434</orcidid><orcidid>https://orcid.org/0000-0002-8774-9350</orcidid><orcidid>https://orcid.org/0000-0001-7215-770X</orcidid><orcidid>https://orcid.org/0000-0003-1050-1995</orcidid><orcidid>https://orcid.org/0000-0003-3360-0523</orcidid><orcidid>https://orcid.org/0000-0002-1557-3624</orcidid><orcidid>https://orcid.org/0000-0002-5140-6460</orcidid></search><sort><creationdate>20210325</creationdate><title>The importance of warm habitat to the growth regime of cold-water fishes</title><author>Armstrong, Jonathan B. ; Fullerton, Aimee H. ; Jordan, Chris E. ; Ebersole, Joseph L. ; Bellmore, J. Ryan ; Arismendi, Ivan ; Penaluna, Brooke E. ; Reeves, Gordon H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-620b21659150b05fda30ff8dfa7cdb6326e4ad54c6c11b2dddd62077b4820df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/158</topic><topic>631/158/2165</topic><topic>631/158/856</topic><topic>704/286</topic><topic>706/2805</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Cold water</topic><topic>Conservation</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Growth</topic><topic>Habitats</topic><topic>River basins</topic><topic>River networks</topic><topic>Rivers</topic><topic>Seasons</topic><topic>Summer</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Jonathan B.</creatorcontrib><creatorcontrib>Fullerton, Aimee H.</creatorcontrib><creatorcontrib>Jordan, Chris E.</creatorcontrib><creatorcontrib>Ebersole, Joseph L.</creatorcontrib><creatorcontrib>Bellmore, J. Ryan</creatorcontrib><creatorcontrib>Arismendi, Ivan</creatorcontrib><creatorcontrib>Penaluna, Brooke E.</creatorcontrib><creatorcontrib>Reeves, Gordon H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Jonathan B.</au><au>Fullerton, Aimee H.</au><au>Jordan, Chris E.</au><au>Ebersole, Joseph L.</au><au>Bellmore, J. Ryan</au><au>Arismendi, Ivan</au><au>Penaluna, Brooke E.</au><au>Reeves, Gordon H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of warm habitat to the growth regime of cold-water fishes</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><addtitle>Nat Clim Chang</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>354</spage><epage>361</epage><pages>354-361</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>A common goal of biological adaptation planning is to identify and prioritize locations that remain suitably cool during the summer. This implicitly devalues areas that are ephemerally warm, even if they are suitable most of the year for mobile animals. Here we develop an alternative conceptual framework, the growth regime, which considers seasonal and landscape variation in physiological performance, focusing on riverine fish. Using temperature models for 14 river basins, we show that growth opportunities propagate up and down river networks on a seasonal basis, and that downstream habitats that are suboptimally warm in summer may actually provide the majority of growth potential expressed annually. We demonstrate with an agent-based simulation that the shoulder-season use of warmer downstream habitats can fuel annual fish production. Our work reveals a synergy between cold and warm habitats that could be fundamental to support cold-water fisheries, and highlights the risk in conservation strategies that underappreciate warm habitats.
Modelling riverine fish growth across warm and cool sections of a river network, the authors demonstrate that habitats that are suboptimally warm in summer may actually provide the majority of growth potential. This highlights a risk in conservation strategies that devalue ephemerally warm habitats.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35475125</pmid><doi>10.1038/s41558-021-00994-y</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5581-3434</orcidid><orcidid>https://orcid.org/0000-0002-8774-9350</orcidid><orcidid>https://orcid.org/0000-0001-7215-770X</orcidid><orcidid>https://orcid.org/0000-0003-1050-1995</orcidid><orcidid>https://orcid.org/0000-0003-3360-0523</orcidid><orcidid>https://orcid.org/0000-0002-1557-3624</orcidid><orcidid>https://orcid.org/0000-0002-5140-6460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2021-03, Vol.11 (4), p.354-361 |
issn | 1758-678X 1758-6798 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9037341 |
source | SpringerLink Journals; Nature |
subjects | 631/158 631/158/2165 631/158/856 704/286 706/2805 Climate Change Climate Change/Climate Change Impacts Cold water Conservation Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Fish Fisheries Growth Habitats River basins River networks Rivers Seasons Summer Water temperature |
title | The importance of warm habitat to the growth regime of cold-water fishes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20warm%20habitat%20to%20the%20growth%20regime%20of%20cold-water%20fishes&rft.jtitle=Nature%20climate%20change&rft.au=Armstrong,%20Jonathan%20B.&rft.date=2021-03-25&rft.volume=11&rft.issue=4&rft.spage=354&rft.epage=361&rft.pages=354-361&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-021-00994-y&rft_dat=%3Cproquest_pubme%3E2507806834%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507806834&rft_id=info:pmid/35475125&rfr_iscdi=true |