Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model

Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2022-04, Vol.2022, p.9470683-8
Hauptverfasser: Bao, Wenzheng, Cui, Qingyu, Chen, Baitong, Yang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 9470683
container_title Computational and mathematical methods in medicine
container_volume 2022
creator Bao, Wenzheng
Cui, Qingyu
Chen, Baitong
Yang, Bin
description Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.
doi_str_mv 10.1155/2022/9470683
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655107419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</originalsourceid><addsrcrecordid>eNp9kc9LwzAYhoMo_pjePEuOgs7la5sm9SDocCpUHKLiRULafl0jXTuTTvG_t3Vz6MVTwpsnz_fBS8g-sBMAzgce87xBFAgWSn-NbIMIZD8UINdXd_a8RXace2WMg-CwSbZ8HoScAd8mL-NCT1A9VuZexVcXt6f0O6BPxpq6omNbN2gqR4elds7kJtVNl3-YpqDdJ5zREepmbtFRXWU0NpOiaT30ts6w3CUbuS4d7i3PHnkcXT4Mr_vx3dXN8Dzup17I_T5AmHGRS49pLUTuBTzTOSbSk9pvU0DJkjALIU8DFgGXSRCBiCSyNEJI0sTvkbOFdzZPppilWDVWl2pmzVTbT1Vro_6-VKZQk_pdRcz3fc5aweFSYOu3ObpGTY1LsSx1hfXcqXZNDkwEELXo8QJNbe2cxXw1BpjqGlFdI2rZSIsf_F5tBf9U0AJHC6AwVaY_zP-6L6Ddk0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655107419</pqid></control><display><type>article</type><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin</creator><contributor>Wei, Leyi</contributor><creatorcontrib>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin ; Wei, Leyi</creatorcontrib><description>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/9470683</identifier><identifier>PMID: 35465015</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Bacteriophages - metabolism ; Computational Biology - methods ; Humans ; Proteins - metabolism ; Virion - metabolism</subject><ispartof>Computational and mathematical methods in medicine, 2022-04, Vol.2022, p.9470683-8</ispartof><rights>Copyright © 2022 Wenzheng Bao et al.</rights><rights>Copyright © 2022 Wenzheng Bao et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</citedby><cites>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</cites><orcidid>0000-0002-1471-5432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35465015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Leyi</contributor><creatorcontrib>Bao, Wenzheng</creatorcontrib><creatorcontrib>Cui, Qingyu</creatorcontrib><creatorcontrib>Chen, Baitong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</description><subject>Algorithms</subject><subject>Bacteriophages - metabolism</subject><subject>Computational Biology - methods</subject><subject>Humans</subject><subject>Proteins - metabolism</subject><subject>Virion - metabolism</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9LwzAYhoMo_pjePEuOgs7la5sm9SDocCpUHKLiRULafl0jXTuTTvG_t3Vz6MVTwpsnz_fBS8g-sBMAzgce87xBFAgWSn-NbIMIZD8UINdXd_a8RXace2WMg-CwSbZ8HoScAd8mL-NCT1A9VuZexVcXt6f0O6BPxpq6omNbN2gqR4elds7kJtVNl3-YpqDdJ5zREepmbtFRXWU0NpOiaT30ts6w3CUbuS4d7i3PHnkcXT4Mr_vx3dXN8Dzup17I_T5AmHGRS49pLUTuBTzTOSbSk9pvU0DJkjALIU8DFgGXSRCBiCSyNEJI0sTvkbOFdzZPppilWDVWl2pmzVTbT1Vro_6-VKZQk_pdRcz3fc5aweFSYOu3ObpGTY1LsSx1hfXcqXZNDkwEELXo8QJNbe2cxXw1BpjqGlFdI2rZSIsf_F5tBf9U0AJHC6AwVaY_zP-6L6Ddk0A</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Bao, Wenzheng</creator><creator>Cui, Qingyu</creator><creator>Chen, Baitong</creator><creator>Yang, Bin</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1471-5432</orcidid></search><sort><creationdate>20220415</creationdate><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><author>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bacteriophages - metabolism</topic><topic>Computational Biology - methods</topic><topic>Humans</topic><topic>Proteins - metabolism</topic><topic>Virion - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wenzheng</creatorcontrib><creatorcontrib>Cui, Qingyu</creatorcontrib><creatorcontrib>Chen, Baitong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wenzheng</au><au>Cui, Qingyu</au><au>Chen, Baitong</au><au>Yang, Bin</au><au>Wei, Leyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>2022</volume><spage>9470683</spage><epage>8</epage><pages>9470683-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35465015</pmid><doi>10.1155/2022/9470683</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1471-5432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2022-04, Vol.2022, p.9470683-8
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033350
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Bacteriophages - metabolism
Computational Biology - methods
Humans
Proteins - metabolism
Virion - metabolism
title Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage_UniR_LGBM:%20Phage%20Virion%20Proteins%20Classification%20with%20UniRep%20Features%20and%20LightGBM%20Model&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Bao,%20Wenzheng&rft.date=2022-04-15&rft.volume=2022&rft.spage=9470683&rft.epage=8&rft.pages=9470683-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/9470683&rft_dat=%3Cproquest_pubme%3E2655107419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655107419&rft_id=info:pmid/35465015&rfr_iscdi=true