Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model
Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that n...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2022-04, Vol.2022, p.9470683-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 9470683 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2022 |
creator | Bao, Wenzheng Cui, Qingyu Chen, Baitong Yang, Bin |
description | Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score. |
doi_str_mv | 10.1155/2022/9470683 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655107419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</originalsourceid><addsrcrecordid>eNp9kc9LwzAYhoMo_pjePEuOgs7la5sm9SDocCpUHKLiRULafl0jXTuTTvG_t3Vz6MVTwpsnz_fBS8g-sBMAzgce87xBFAgWSn-NbIMIZD8UINdXd_a8RXace2WMg-CwSbZ8HoScAd8mL-NCT1A9VuZexVcXt6f0O6BPxpq6omNbN2gqR4elds7kJtVNl3-YpqDdJ5zREepmbtFRXWU0NpOiaT30ts6w3CUbuS4d7i3PHnkcXT4Mr_vx3dXN8Dzup17I_T5AmHGRS49pLUTuBTzTOSbSk9pvU0DJkjALIU8DFgGXSRCBiCSyNEJI0sTvkbOFdzZPppilWDVWl2pmzVTbT1Vro_6-VKZQk_pdRcz3fc5aweFSYOu3ObpGTY1LsSx1hfXcqXZNDkwEELXo8QJNbe2cxXw1BpjqGlFdI2rZSIsf_F5tBf9U0AJHC6AwVaY_zP-6L6Ddk0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655107419</pqid></control><display><type>article</type><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin</creator><contributor>Wei, Leyi</contributor><creatorcontrib>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin ; Wei, Leyi</creatorcontrib><description>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/9470683</identifier><identifier>PMID: 35465015</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Bacteriophages - metabolism ; Computational Biology - methods ; Humans ; Proteins - metabolism ; Virion - metabolism</subject><ispartof>Computational and mathematical methods in medicine, 2022-04, Vol.2022, p.9470683-8</ispartof><rights>Copyright © 2022 Wenzheng Bao et al.</rights><rights>Copyright © 2022 Wenzheng Bao et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</citedby><cites>FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</cites><orcidid>0000-0002-1471-5432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35465015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Leyi</contributor><creatorcontrib>Bao, Wenzheng</creatorcontrib><creatorcontrib>Cui, Qingyu</creatorcontrib><creatorcontrib>Chen, Baitong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</description><subject>Algorithms</subject><subject>Bacteriophages - metabolism</subject><subject>Computational Biology - methods</subject><subject>Humans</subject><subject>Proteins - metabolism</subject><subject>Virion - metabolism</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9LwzAYhoMo_pjePEuOgs7la5sm9SDocCpUHKLiRULafl0jXTuTTvG_t3Vz6MVTwpsnz_fBS8g-sBMAzgce87xBFAgWSn-NbIMIZD8UINdXd_a8RXace2WMg-CwSbZ8HoScAd8mL-NCT1A9VuZexVcXt6f0O6BPxpq6omNbN2gqR4elds7kJtVNl3-YpqDdJ5zREepmbtFRXWU0NpOiaT30ts6w3CUbuS4d7i3PHnkcXT4Mr_vx3dXN8Dzup17I_T5AmHGRS49pLUTuBTzTOSbSk9pvU0DJkjALIU8DFgGXSRCBiCSyNEJI0sTvkbOFdzZPppilWDVWl2pmzVTbT1Vro_6-VKZQk_pdRcz3fc5aweFSYOu3ObpGTY1LsSx1hfXcqXZNDkwEELXo8QJNbe2cxXw1BpjqGlFdI2rZSIsf_F5tBf9U0AJHC6AwVaY_zP-6L6Ddk0A</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Bao, Wenzheng</creator><creator>Cui, Qingyu</creator><creator>Chen, Baitong</creator><creator>Yang, Bin</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1471-5432</orcidid></search><sort><creationdate>20220415</creationdate><title>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</title><author>Bao, Wenzheng ; Cui, Qingyu ; Chen, Baitong ; Yang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2653-116d57f820aa77f245dafeb828a3f821e80b6d61fc409158b491798e0c9e1bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bacteriophages - metabolism</topic><topic>Computational Biology - methods</topic><topic>Humans</topic><topic>Proteins - metabolism</topic><topic>Virion - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wenzheng</creatorcontrib><creatorcontrib>Cui, Qingyu</creatorcontrib><creatorcontrib>Chen, Baitong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wenzheng</au><au>Cui, Qingyu</au><au>Chen, Baitong</au><au>Yang, Bin</au><au>Wei, Leyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>2022</volume><spage>9470683</spage><epage>8</epage><pages>9470683-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Phage, the most prevalent creature on the planet, serves a variety of critical roles. Phage’s primary role is to facilitate gene-to-gene communication. The phage proteins can be defined as the virion proteins and the nonvirion ones. Nowadays, experimental identification is a difficult process that necessitates a significant amount of laboratory time and expense. Considering such situation, it is critical to design practical calculating techniques and develop well-performance tools. In this work, the Phage_UniR_LGBM has been proposed to classify the virion proteins. In detailed, such model utilizes the UniRep as the feature and the LightGBM algorithm as the classification model. And then, the training data train the model, and the testing data test the model with the cross-validation. The Phage_UniR_LGBM was compared with the several state-of-the-art features and classification algorithms. The performances of the Phage_UniR_LGBM are 88.51% in Sp,89.89% in Sn, 89.18% in Acc, 0.7873 in MCC, and 0.8925 in F1 score.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35465015</pmid><doi>10.1155/2022/9470683</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1471-5432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2022-04, Vol.2022, p.9470683-8 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033350 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Bacteriophages - metabolism Computational Biology - methods Humans Proteins - metabolism Virion - metabolism |
title | Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage_UniR_LGBM:%20Phage%20Virion%20Proteins%20Classification%20with%20UniRep%20Features%20and%20LightGBM%20Model&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Bao,%20Wenzheng&rft.date=2022-04-15&rft.volume=2022&rft.spage=9470683&rft.epage=8&rft.pages=9470683-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/9470683&rft_dat=%3Cproquest_pubme%3E2655107419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655107419&rft_id=info:pmid/35465015&rfr_iscdi=true |