Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray

Industries developing cold spray aim at dense and resistant coatings for component repair. However, as-sprayed 316L coatings display non-equilibrium microstructure and brittle fracture behavior. Improving their mechanical properties requires controlling their microstructure; post-spraying heat treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal spray technology 2022, Vol.31 (5), p.1725-1746
Hauptverfasser: Brassart, Laury-Hann, Besson, Jacques, Delloro, Francesco, Haboussa, David, Delabrouille, Frédéric, Rolland, Gilles, Shen, Yang, Gourgues-Lorenzon, Anne-Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 5
container_start_page 1725
container_title Journal of thermal spray technology
container_volume 31
creator Brassart, Laury-Hann
Besson, Jacques
Delloro, Francesco
Haboussa, David
Delabrouille, Frédéric
Rolland, Gilles
Shen, Yang
Gourgues-Lorenzon, Anne-Françoise
description Industries developing cold spray aim at dense and resistant coatings for component repair. However, as-sprayed 316L coatings display non-equilibrium microstructure and brittle fracture behavior. Improving their mechanical properties requires controlling their microstructure; post-spraying heat treatment is a promising approach. The recovery and recrystallization of coatings were little studied, and heat treatments reported in literature mostly used holding for long time in furnaces, not adapted to on-site repairs. This study aimed at gaining insights into recovery and recrystallization mechanisms of 316L coatings, for a broader range of heat treatment kinetics. A study of powders and as-sprayed coatings was conducted to characterize the initial state. In situ XRD measurements provided input for heat treatment definition. Microscopy, room temperature XRD and hardness measurements allowed to better understand the microstructural evolutions and to select treatments leading to original microstructures. In this work, a variety of microstructures were produced by adapting heat treatment conditions for a given set of spraying parameters. The recrystallization path of the heterogeneous skin-core microstructure of deposited particles, as well as the interaction between grain growth and precipitation was revealed. A novel, optimized fast heat treatment led to a fully recrystallized, fine-grained coating and significantly reduced hardness.
doi_str_mv 10.1007/s11666-022-01402-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844087841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-263c9af06a17cee7a3ccab195aa3ead7a148eefac38f72746d1749e6a86777d53</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhCIlsIf4IB8pIfA-BE7uSCtVoVFWtRDC1dr1pnsusomi-1UWn49Dlsq4MDFHs33GM18RfGawzsOYN5HzrXWJQhRAlcgSvmkOOeVUiUHrp_mGqqmbLSEs-JFjHcAUGlRPS_OpKl4I4U5L35cdR25xMaOfcPgxymyFWFityG_expSZOPA0o7YF-_CGFOYXJoCzQLJ9Zotppho8Mk7dpPQDz3FmCuini1HTH7YRna9mRFq2eaYm33Lbg4Bjy-LZx32kV49_BfF149Xt8tVub7-9Hm5WJdO1ZBKoaVrsAON3Dgig9I53PCmQpSErUGuaqIOnaw7I4zSLTeqIY21Nsa0lbwoPpx8D9NmT63LSwXs7SH4PYajHdHbv5HB7-x2vLcNSCk0zwaXJ4PdP7LVYm3nHkgDPHPvZ-7bh2Fh_D5RTHbvo6O-x4Hyca2olYLa1GqmihN1vmsM1D16c7BzwPYUsM0B218BW5lFb_5c5lHyO9FMkCdCzNCwpWDvxikM-cD_s_0JcceyWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844087841</pqid></control><display><type>article</type><title>Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray</title><source>Springer Nature - Complete Springer Journals</source><creator>Brassart, Laury-Hann ; Besson, Jacques ; Delloro, Francesco ; Haboussa, David ; Delabrouille, Frédéric ; Rolland, Gilles ; Shen, Yang ; Gourgues-Lorenzon, Anne-Françoise</creator><creatorcontrib>Brassart, Laury-Hann ; Besson, Jacques ; Delloro, Francesco ; Haboussa, David ; Delabrouille, Frédéric ; Rolland, Gilles ; Shen, Yang ; Gourgues-Lorenzon, Anne-Françoise</creatorcontrib><description>Industries developing cold spray aim at dense and resistant coatings for component repair. However, as-sprayed 316L coatings display non-equilibrium microstructure and brittle fracture behavior. Improving their mechanical properties requires controlling their microstructure; post-spraying heat treatment is a promising approach. The recovery and recrystallization of coatings were little studied, and heat treatments reported in literature mostly used holding for long time in furnaces, not adapted to on-site repairs. This study aimed at gaining insights into recovery and recrystallization mechanisms of 316L coatings, for a broader range of heat treatment kinetics. A study of powders and as-sprayed coatings was conducted to characterize the initial state. In situ XRD measurements provided input for heat treatment definition. Microscopy, room temperature XRD and hardness measurements allowed to better understand the microstructural evolutions and to select treatments leading to original microstructures. In this work, a variety of microstructures were produced by adapting heat treatment conditions for a given set of spraying parameters. The recrystallization path of the heterogeneous skin-core microstructure of deposited particles, as well as the interaction between grain growth and precipitation was revealed. A novel, optimized fast heat treatment led to a fully recrystallized, fine-grained coating and significantly reduced hardness.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-022-01402-3</identifier><identifier>PMID: 37519327</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Engineering Sciences ; Machines ; Manufacturing ; Materials ; Materials Science ; Peer Reviewed ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2022, Vol.31 (5), p.1725-1746</ispartof><rights>ASM International 2022</rights><rights>ASM International 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-263c9af06a17cee7a3ccab195aa3ead7a148eefac38f72746d1749e6a86777d53</citedby><cites>FETCH-LOGICAL-c480t-263c9af06a17cee7a3ccab195aa3ead7a148eefac38f72746d1749e6a86777d53</cites><orcidid>0000-0002-3068-180X ; 0000-0003-1975-2408 ; 0000-0002-5671-9415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11666-022-01402-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11666-022-01402-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37519327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-03701332$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brassart, Laury-Hann</creatorcontrib><creatorcontrib>Besson, Jacques</creatorcontrib><creatorcontrib>Delloro, Francesco</creatorcontrib><creatorcontrib>Haboussa, David</creatorcontrib><creatorcontrib>Delabrouille, Frédéric</creatorcontrib><creatorcontrib>Rolland, Gilles</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Gourgues-Lorenzon, Anne-Françoise</creatorcontrib><title>Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><addtitle>J Therm Spray Technol</addtitle><description>Industries developing cold spray aim at dense and resistant coatings for component repair. However, as-sprayed 316L coatings display non-equilibrium microstructure and brittle fracture behavior. Improving their mechanical properties requires controlling their microstructure; post-spraying heat treatment is a promising approach. The recovery and recrystallization of coatings were little studied, and heat treatments reported in literature mostly used holding for long time in furnaces, not adapted to on-site repairs. This study aimed at gaining insights into recovery and recrystallization mechanisms of 316L coatings, for a broader range of heat treatment kinetics. A study of powders and as-sprayed coatings was conducted to characterize the initial state. In situ XRD measurements provided input for heat treatment definition. Microscopy, room temperature XRD and hardness measurements allowed to better understand the microstructural evolutions and to select treatments leading to original microstructures. In this work, a variety of microstructures were produced by adapting heat treatment conditions for a given set of spraying parameters. The recrystallization path of the heterogeneous skin-core microstructure of deposited particles, as well as the interaction between grain growth and precipitation was revealed. A novel, optimized fast heat treatment led to a fully recrystallized, fine-grained coating and significantly reduced hardness.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Engineering Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UUtv1DAQjhCIlsIf4IB8pIfA-BE7uSCtVoVFWtRDC1dr1pnsusomi-1UWn49Dlsq4MDFHs33GM18RfGawzsOYN5HzrXWJQhRAlcgSvmkOOeVUiUHrp_mGqqmbLSEs-JFjHcAUGlRPS_OpKl4I4U5L35cdR25xMaOfcPgxymyFWFityG_expSZOPA0o7YF-_CGFOYXJoCzQLJ9Zotppho8Mk7dpPQDz3FmCuini1HTH7YRna9mRFq2eaYm33Lbg4Bjy-LZx32kV49_BfF149Xt8tVub7-9Hm5WJdO1ZBKoaVrsAON3Dgig9I53PCmQpSErUGuaqIOnaw7I4zSLTeqIY21Nsa0lbwoPpx8D9NmT63LSwXs7SH4PYajHdHbv5HB7-x2vLcNSCk0zwaXJ4PdP7LVYm3nHkgDPHPvZ-7bh2Fh_D5RTHbvo6O-x4Hyca2olYLa1GqmihN1vmsM1D16c7BzwPYUsM0B218BW5lFb_5c5lHyO9FMkCdCzNCwpWDvxikM-cD_s_0JcceyWg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Brassart, Laury-Hann</creator><creator>Besson, Jacques</creator><creator>Delloro, Francesco</creator><creator>Haboussa, David</creator><creator>Delabrouille, Frédéric</creator><creator>Rolland, Gilles</creator><creator>Shen, Yang</creator><creator>Gourgues-Lorenzon, Anne-Françoise</creator><general>Springer US</general><general>ASM International/Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3068-180X</orcidid><orcidid>https://orcid.org/0000-0003-1975-2408</orcidid><orcidid>https://orcid.org/0000-0002-5671-9415</orcidid></search><sort><creationdate>2022</creationdate><title>Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray</title><author>Brassart, Laury-Hann ; Besson, Jacques ; Delloro, Francesco ; Haboussa, David ; Delabrouille, Frédéric ; Rolland, Gilles ; Shen, Yang ; Gourgues-Lorenzon, Anne-Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-263c9af06a17cee7a3ccab195aa3ead7a148eefac38f72746d1749e6a86777d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Engineering Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brassart, Laury-Hann</creatorcontrib><creatorcontrib>Besson, Jacques</creatorcontrib><creatorcontrib>Delloro, Francesco</creatorcontrib><creatorcontrib>Haboussa, David</creatorcontrib><creatorcontrib>Delabrouille, Frédéric</creatorcontrib><creatorcontrib>Rolland, Gilles</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Gourgues-Lorenzon, Anne-Françoise</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brassart, Laury-Hann</au><au>Besson, Jacques</au><au>Delloro, Francesco</au><au>Haboussa, David</au><au>Delabrouille, Frédéric</au><au>Rolland, Gilles</au><au>Shen, Yang</au><au>Gourgues-Lorenzon, Anne-Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><addtitle>J Therm Spray Technol</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><issue>5</issue><spage>1725</spage><epage>1746</epage><pages>1725-1746</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>Industries developing cold spray aim at dense and resistant coatings for component repair. However, as-sprayed 316L coatings display non-equilibrium microstructure and brittle fracture behavior. Improving their mechanical properties requires controlling their microstructure; post-spraying heat treatment is a promising approach. The recovery and recrystallization of coatings were little studied, and heat treatments reported in literature mostly used holding for long time in furnaces, not adapted to on-site repairs. This study aimed at gaining insights into recovery and recrystallization mechanisms of 316L coatings, for a broader range of heat treatment kinetics. A study of powders and as-sprayed coatings was conducted to characterize the initial state. In situ XRD measurements provided input for heat treatment definition. Microscopy, room temperature XRD and hardness measurements allowed to better understand the microstructural evolutions and to select treatments leading to original microstructures. In this work, a variety of microstructures were produced by adapting heat treatment conditions for a given set of spraying parameters. The recrystallization path of the heterogeneous skin-core microstructure of deposited particles, as well as the interaction between grain growth and precipitation was revealed. A novel, optimized fast heat treatment led to a fully recrystallized, fine-grained coating and significantly reduced hardness.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37519327</pmid><doi>10.1007/s11666-022-01402-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3068-180X</orcidid><orcidid>https://orcid.org/0000-0003-1975-2408</orcidid><orcidid>https://orcid.org/0000-0002-5671-9415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-9630
ispartof Journal of thermal spray technology, 2022, Vol.31 (5), p.1725-1746
issn 1059-9630
1544-1016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9033261
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Engineering Sciences
Machines
Manufacturing
Materials
Materials Science
Peer Reviewed
Processes
Surfaces and Interfaces
Thin Films
Tribology
title Effect of Various Heat Treatments on the Microstructure of 316L Austenitic Stainless Steel Coatings Obtained by Cold Spray
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Various%20Heat%20Treatments%20on%20the%20Microstructure%20of%20316L%20Austenitic%20Stainless%20Steel%20Coatings%20Obtained%20by%20Cold%20Spray&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Brassart,%20Laury-Hann&rft.date=2022&rft.volume=31&rft.issue=5&rft.spage=1725&rft.epage=1746&rft.pages=1725-1746&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-022-01402-3&rft_dat=%3Cproquest_pubme%3E2844087841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844087841&rft_id=info:pmid/37519327&rfr_iscdi=true