Engineering a living cardiac pump on a chip using high-precision fabrication

Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-04, Vol.8 (16), p.eabm3791-eabm3791
Hauptverfasser: Michas, Christos, Karakan, M Çağatay, Nautiyal, Pranjal, Seidman, Jonathan G, Seidman, Christine E, Agarwal, Arvind, Ekinci, Kamil, Eyckmans, Jeroen, White, Alice E, Chen, Christopher S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabm3791
container_issue 16
container_start_page eabm3791
container_title Science advances
container_volume 8
creator Michas, Christos
Karakan, M Çağatay
Nautiyal, Pranjal
Seidman, Jonathan G
Seidman, Christine E
Agarwal, Arvind
Ekinci, Kamil
Eyckmans, Jeroen
White, Alice E
Chen, Christopher S
description Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.
doi_str_mv 10.1126/sciadv.abm3791
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654281992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-fdebb51ee56fbc3f4a2c42653b071925163228947c41bc8331bd8b90fc87e513</originalsourceid><addsrcrecordid>eNpVUT1rwzAUFKWlCWnWjsVjF6f6trUUSkg_INAlu5Bk2VaxZVeyA_33dUga0ukd3L17xzsA7hFcIYT5UzROFfuV0i3JBLoCc0wylmJG8-sLPAPLGL8ghIhyzpC4BTPCKMM4y-dgu_GV89YG56tEJY3bH4BRoXDKJP3Y9knnJ8LUrk_GeCBrV9VpH6xx0U1cqXRwRg0TvgM3pWqiXZ7mAuxeN7v1e7r9fPtYv2xTQwQc0rKwWjNkLeOlNqSkChuKOSMaZkhghjjBOBc0MxRpkxOCdJFrAUuTZ5YhsgDPR9t-1K0tjPVDUI3sg2tV-JGdcvI_410tq24vBSRYcD4ZPJ4MQvc92jjI1kVjm0Z5241RTlkozpEQeJKujlITuhiDLc9nEJSHEuSxBHkqYVp4uAx3lv-9nPwCWYWF1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654281992</pqid></control><display><type>article</type><title>Engineering a living cardiac pump on a chip using high-precision fabrication</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Michas, Christos ; Karakan, M Çağatay ; Nautiyal, Pranjal ; Seidman, Jonathan G ; Seidman, Christine E ; Agarwal, Arvind ; Ekinci, Kamil ; Eyckmans, Jeroen ; White, Alice E ; Chen, Christopher S</creator><creatorcontrib>Michas, Christos ; Karakan, M Çağatay ; Nautiyal, Pranjal ; Seidman, Jonathan G ; Seidman, Christine E ; Agarwal, Arvind ; Ekinci, Kamil ; Eyckmans, Jeroen ; White, Alice E ; Chen, Christopher S</creatorcontrib><description>Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abm3791</identifier><identifier>PMID: 35452278</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Engineering ; Life Sciences ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-04, Vol.8 (16), p.eabm3791-eabm3791</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-fdebb51ee56fbc3f4a2c42653b071925163228947c41bc8331bd8b90fc87e513</citedby><cites>FETCH-LOGICAL-c390t-fdebb51ee56fbc3f4a2c42653b071925163228947c41bc8331bd8b90fc87e513</cites><orcidid>0000-0003-3735-4323 ; 0000-0002-7587-8913 ; 0000-0002-7594-2524 ; 0000-0001-6380-1209 ; 0000-0002-9082-3566 ; 0000-0002-7052-653X ; 0000-0003-2445-8449 ; 0000-0003-1475-8149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032966/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032966/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michas, Christos</creatorcontrib><creatorcontrib>Karakan, M Çağatay</creatorcontrib><creatorcontrib>Nautiyal, Pranjal</creatorcontrib><creatorcontrib>Seidman, Jonathan G</creatorcontrib><creatorcontrib>Seidman, Christine E</creatorcontrib><creatorcontrib>Agarwal, Arvind</creatorcontrib><creatorcontrib>Ekinci, Kamil</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>White, Alice E</creatorcontrib><creatorcontrib>Chen, Christopher S</creatorcontrib><title>Engineering a living cardiac pump on a chip using high-precision fabrication</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.</description><subject>Engineering</subject><subject>Life Sciences</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUT1rwzAUFKWlCWnWjsVjF6f6trUUSkg_INAlu5Bk2VaxZVeyA_33dUga0ukd3L17xzsA7hFcIYT5UzROFfuV0i3JBLoCc0wylmJG8-sLPAPLGL8ghIhyzpC4BTPCKMM4y-dgu_GV89YG56tEJY3bH4BRoXDKJP3Y9knnJ8LUrk_GeCBrV9VpH6xx0U1cqXRwRg0TvgM3pWqiXZ7mAuxeN7v1e7r9fPtYv2xTQwQc0rKwWjNkLeOlNqSkChuKOSMaZkhghjjBOBc0MxRpkxOCdJFrAUuTZ5YhsgDPR9t-1K0tjPVDUI3sg2tV-JGdcvI_410tq24vBSRYcD4ZPJ4MQvc92jjI1kVjm0Z5241RTlkozpEQeJKujlITuhiDLc9nEJSHEuSxBHkqYVp4uAx3lv-9nPwCWYWF1w</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Michas, Christos</creator><creator>Karakan, M Çağatay</creator><creator>Nautiyal, Pranjal</creator><creator>Seidman, Jonathan G</creator><creator>Seidman, Christine E</creator><creator>Agarwal, Arvind</creator><creator>Ekinci, Kamil</creator><creator>Eyckmans, Jeroen</creator><creator>White, Alice E</creator><creator>Chen, Christopher S</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3735-4323</orcidid><orcidid>https://orcid.org/0000-0002-7587-8913</orcidid><orcidid>https://orcid.org/0000-0002-7594-2524</orcidid><orcidid>https://orcid.org/0000-0001-6380-1209</orcidid><orcidid>https://orcid.org/0000-0002-9082-3566</orcidid><orcidid>https://orcid.org/0000-0002-7052-653X</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid><orcidid>https://orcid.org/0000-0003-1475-8149</orcidid></search><sort><creationdate>20220422</creationdate><title>Engineering a living cardiac pump on a chip using high-precision fabrication</title><author>Michas, Christos ; Karakan, M Çağatay ; Nautiyal, Pranjal ; Seidman, Jonathan G ; Seidman, Christine E ; Agarwal, Arvind ; Ekinci, Kamil ; Eyckmans, Jeroen ; White, Alice E ; Chen, Christopher S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-fdebb51ee56fbc3f4a2c42653b071925163228947c41bc8331bd8b90fc87e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering</topic><topic>Life Sciences</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michas, Christos</creatorcontrib><creatorcontrib>Karakan, M Çağatay</creatorcontrib><creatorcontrib>Nautiyal, Pranjal</creatorcontrib><creatorcontrib>Seidman, Jonathan G</creatorcontrib><creatorcontrib>Seidman, Christine E</creatorcontrib><creatorcontrib>Agarwal, Arvind</creatorcontrib><creatorcontrib>Ekinci, Kamil</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>White, Alice E</creatorcontrib><creatorcontrib>Chen, Christopher S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michas, Christos</au><au>Karakan, M Çağatay</au><au>Nautiyal, Pranjal</au><au>Seidman, Jonathan G</au><au>Seidman, Christine E</au><au>Agarwal, Arvind</au><au>Ekinci, Kamil</au><au>Eyckmans, Jeroen</au><au>White, Alice E</au><au>Chen, Christopher S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a living cardiac pump on a chip using high-precision fabrication</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-04-22</date><risdate>2022</risdate><volume>8</volume><issue>16</issue><spage>eabm3791</spage><epage>eabm3791</epage><pages>eabm3791-eabm3791</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35452278</pmid><doi>10.1126/sciadv.abm3791</doi><orcidid>https://orcid.org/0000-0003-3735-4323</orcidid><orcidid>https://orcid.org/0000-0002-7587-8913</orcidid><orcidid>https://orcid.org/0000-0002-7594-2524</orcidid><orcidid>https://orcid.org/0000-0001-6380-1209</orcidid><orcidid>https://orcid.org/0000-0002-9082-3566</orcidid><orcidid>https://orcid.org/0000-0002-7052-653X</orcidid><orcidid>https://orcid.org/0000-0003-2445-8449</orcidid><orcidid>https://orcid.org/0000-0003-1475-8149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-04, Vol.8 (16), p.eabm3791-eabm3791
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032966
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Engineering
Life Sciences
Physical and Materials Sciences
SciAdv r-articles
title Engineering a living cardiac pump on a chip using high-precision fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20living%20cardiac%20pump%20on%20a%20chip%20using%20high-precision%20fabrication&rft.jtitle=Science%20advances&rft.au=Michas,%20Christos&rft.date=2022-04-22&rft.volume=8&rft.issue=16&rft.spage=eabm3791&rft.epage=eabm3791&rft.pages=eabm3791-eabm3791&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abm3791&rft_dat=%3Cproquest_pubme%3E2654281992%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654281992&rft_id=info:pmid/35452278&rfr_iscdi=true