Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait

Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2021-12, Vol.129, p.110749-110749, Article 110749
Hauptverfasser: Willson, Andrea M., Richburg, Chris A., Anderson, Anthony J., Muir, Brittney C., Czerniecki, Joseph, Steele, Katherine M., Aubin, Patrick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110749
container_issue
container_start_page 110749
container_title Journal of biomechanics
container_volume 129
creator Willson, Andrea M.
Richburg, Chris A.
Anderson, Anthony J.
Muir, Brittney C.
Czerniecki, Joseph
Steele, Katherine M.
Aubin, Patrick M.
description Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a spring mechanism to replicate the GAS. A prototype Biarticular Prosthesis (BP) was tested on seven participants with unilateral transtibial amputation. Participants walked on an instrumented treadmill with motion capture, first using their prescribed prosthesis, then with the BP in four different spring stiffness conditions. A custom OpenSim musculoskeletal model, including the BP, was used to estimate kinematics, joint torques, and muscle forces. Kinematic symmetry was evaluated by comparing the amputated and intact angles of the ankle, knee, and hip. The BP knee and ankle torques were compared to the intact GAS. Finally, work done by the BP spring was calculated at the ankle and knee. There were no significant differences between conditions in kinematic symmetry, indicating that the BP performs similarly to prescribed prostheses. When comparing the BP torques to intact GAS, higher spring stiffness better approximated peak GAS torques, but those peaks occurred earlier in the gait cycle. The BP spring did positive work on the knee joint and negative work on the ankle joint, and this work increased as BP spring stiffness increased. The BP has the potential to improve amputee gait compensations associated with the lack of biarticular GAS function, which may reduce their walking effort and improve quality of life.
doi_str_mv 10.1016/j.jbiomech.2021.110749
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9027914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929021005157</els_id><sourcerecordid>2577733870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-acd3dc9954b3a5fae15b8684655705c5acc043218b8232d7cad6fa769025f32b3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL1SWuHDJ4o84ji8IVBVaqRIXOFsTx-l6ldipP1bqv8fLthVw4eTDPPN4Zl6ELijZUkK7j_vtfnBhsWa3ZYTRLaVEtuoF2tBe8obxnrxEG1IrjWKKnKE3Ke0JqYxUr9EZb0XPqeo3KF8dYC6QXfA4TBjwfYHkmhVScgeLBwcxO1NmiHiNIeWdTS7hHHC06-wMZIvvIOUYjLeLKwlPxZvfNudxjuBTdlUyY1jWku2RdvktejXBnOy7x_cc_fx69ePyurn9_u3m8sttY1qlcgNm5KNRSrQDBzGBpWLou77thJBEGAHGkJYz2g8942yUBsZuAtkpwsTE2cDP0aeTdy3DYkdjfZ1o1mt0C8QHHcDpvyve7fRdOOhqkIq2VfDhURDDfbEp68UlY-cZvA0laSaklJz3klT0_T_oPpTo63qadURy2vHuKOxOlKnHTNFOz8NQoo_B6r1-ClYfg9WnYGvjxZ-rPLc9JVmBzyfA1oMenI06GWe9saOL1mQ9Bve_P34B6vq7KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607316364</pqid></control><display><type>article</type><title>Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Willson, Andrea M. ; Richburg, Chris A. ; Anderson, Anthony J. ; Muir, Brittney C. ; Czerniecki, Joseph ; Steele, Katherine M. ; Aubin, Patrick M.</creator><creatorcontrib>Willson, Andrea M. ; Richburg, Chris A. ; Anderson, Anthony J. ; Muir, Brittney C. ; Czerniecki, Joseph ; Steele, Katherine M. ; Aubin, Patrick M.</creatorcontrib><description>Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a spring mechanism to replicate the GAS. A prototype Biarticular Prosthesis (BP) was tested on seven participants with unilateral transtibial amputation. Participants walked on an instrumented treadmill with motion capture, first using their prescribed prosthesis, then with the BP in four different spring stiffness conditions. A custom OpenSim musculoskeletal model, including the BP, was used to estimate kinematics, joint torques, and muscle forces. Kinematic symmetry was evaluated by comparing the amputated and intact angles of the ankle, knee, and hip. The BP knee and ankle torques were compared to the intact GAS. Finally, work done by the BP spring was calculated at the ankle and knee. There were no significant differences between conditions in kinematic symmetry, indicating that the BP performs similarly to prescribed prostheses. When comparing the BP torques to intact GAS, higher spring stiffness better approximated peak GAS torques, but those peaks occurred earlier in the gait cycle. The BP spring did positive work on the knee joint and negative work on the ankle joint, and this work increased as BP spring stiffness increased. The BP has the potential to improve amputee gait compensations associated with the lack of biarticular GAS function, which may reduce their walking effort and improve quality of life.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2021.110749</identifier><identifier>PMID: 34583198</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amputation ; Amputee ; Amputees ; Ankle ; Artificial Limbs ; Biarticular prosthesis ; Biomechanical Phenomena ; Data collection ; Fitness equipment ; Gait ; Humans ; Joints (anatomy) ; Kinematics ; Knee ; Metabolism ; Motion capture ; Muscles ; Power ; Prostheses ; Prosthesis ; Prosthesis Design ; Prosthetics ; Quality of Life ; Recovery of function ; Stiffness ; Symmetry ; Torque ; Treadmills ; Walking</subject><ispartof>Journal of biomechanics, 2021-12, Vol.129, p.110749-110749, Article 110749</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-acd3dc9954b3a5fae15b8684655705c5acc043218b8232d7cad6fa769025f32b3</citedby><cites>FETCH-LOGICAL-c499t-acd3dc9954b3a5fae15b8684655705c5acc043218b8232d7cad6fa769025f32b3</cites><orcidid>0000-0002-4128-9387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2607316364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34583198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willson, Andrea M.</creatorcontrib><creatorcontrib>Richburg, Chris A.</creatorcontrib><creatorcontrib>Anderson, Anthony J.</creatorcontrib><creatorcontrib>Muir, Brittney C.</creatorcontrib><creatorcontrib>Czerniecki, Joseph</creatorcontrib><creatorcontrib>Steele, Katherine M.</creatorcontrib><creatorcontrib>Aubin, Patrick M.</creatorcontrib><title>Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a spring mechanism to replicate the GAS. A prototype Biarticular Prosthesis (BP) was tested on seven participants with unilateral transtibial amputation. Participants walked on an instrumented treadmill with motion capture, first using their prescribed prosthesis, then with the BP in four different spring stiffness conditions. A custom OpenSim musculoskeletal model, including the BP, was used to estimate kinematics, joint torques, and muscle forces. Kinematic symmetry was evaluated by comparing the amputated and intact angles of the ankle, knee, and hip. The BP knee and ankle torques were compared to the intact GAS. Finally, work done by the BP spring was calculated at the ankle and knee. There were no significant differences between conditions in kinematic symmetry, indicating that the BP performs similarly to prescribed prostheses. When comparing the BP torques to intact GAS, higher spring stiffness better approximated peak GAS torques, but those peaks occurred earlier in the gait cycle. The BP spring did positive work on the knee joint and negative work on the ankle joint, and this work increased as BP spring stiffness increased. The BP has the potential to improve amputee gait compensations associated with the lack of biarticular GAS function, which may reduce their walking effort and improve quality of life.</description><subject>Amputation</subject><subject>Amputee</subject><subject>Amputees</subject><subject>Ankle</subject><subject>Artificial Limbs</subject><subject>Biarticular prosthesis</subject><subject>Biomechanical Phenomena</subject><subject>Data collection</subject><subject>Fitness equipment</subject><subject>Gait</subject><subject>Humans</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Knee</subject><subject>Metabolism</subject><subject>Motion capture</subject><subject>Muscles</subject><subject>Power</subject><subject>Prostheses</subject><subject>Prosthesis</subject><subject>Prosthesis Design</subject><subject>Prosthetics</subject><subject>Quality of Life</subject><subject>Recovery of function</subject><subject>Stiffness</subject><subject>Symmetry</subject><subject>Torque</subject><subject>Treadmills</subject><subject>Walking</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EokvhL1SWuHDJ4o84ji8IVBVaqRIXOFsTx-l6ldipP1bqv8fLthVw4eTDPPN4Zl6ELijZUkK7j_vtfnBhsWa3ZYTRLaVEtuoF2tBe8obxnrxEG1IrjWKKnKE3Ke0JqYxUr9EZb0XPqeo3KF8dYC6QXfA4TBjwfYHkmhVScgeLBwcxO1NmiHiNIeWdTS7hHHC06-wMZIvvIOUYjLeLKwlPxZvfNudxjuBTdlUyY1jWku2RdvktejXBnOy7x_cc_fx69ePyurn9_u3m8sttY1qlcgNm5KNRSrQDBzGBpWLou77thJBEGAHGkJYz2g8942yUBsZuAtkpwsTE2cDP0aeTdy3DYkdjfZ1o1mt0C8QHHcDpvyve7fRdOOhqkIq2VfDhURDDfbEp68UlY-cZvA0laSaklJz3klT0_T_oPpTo63qadURy2vHuKOxOlKnHTNFOz8NQoo_B6r1-ClYfg9WnYGvjxZ-rPLc9JVmBzyfA1oMenI06GWe9saOL1mQ9Bve_P34B6vq7KA</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Willson, Andrea M.</creator><creator>Richburg, Chris A.</creator><creator>Anderson, Anthony J.</creator><creator>Muir, Brittney C.</creator><creator>Czerniecki, Joseph</creator><creator>Steele, Katherine M.</creator><creator>Aubin, Patrick M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4128-9387</orcidid></search><sort><creationdate>20211202</creationdate><title>Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait</title><author>Willson, Andrea M. ; Richburg, Chris A. ; Anderson, Anthony J. ; Muir, Brittney C. ; Czerniecki, Joseph ; Steele, Katherine M. ; Aubin, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-acd3dc9954b3a5fae15b8684655705c5acc043218b8232d7cad6fa769025f32b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amputation</topic><topic>Amputee</topic><topic>Amputees</topic><topic>Ankle</topic><topic>Artificial Limbs</topic><topic>Biarticular prosthesis</topic><topic>Biomechanical Phenomena</topic><topic>Data collection</topic><topic>Fitness equipment</topic><topic>Gait</topic><topic>Humans</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Knee</topic><topic>Metabolism</topic><topic>Motion capture</topic><topic>Muscles</topic><topic>Power</topic><topic>Prostheses</topic><topic>Prosthesis</topic><topic>Prosthesis Design</topic><topic>Prosthetics</topic><topic>Quality of Life</topic><topic>Recovery of function</topic><topic>Stiffness</topic><topic>Symmetry</topic><topic>Torque</topic><topic>Treadmills</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willson, Andrea M.</creatorcontrib><creatorcontrib>Richburg, Chris A.</creatorcontrib><creatorcontrib>Anderson, Anthony J.</creatorcontrib><creatorcontrib>Muir, Brittney C.</creatorcontrib><creatorcontrib>Czerniecki, Joseph</creatorcontrib><creatorcontrib>Steele, Katherine M.</creatorcontrib><creatorcontrib>Aubin, Patrick M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willson, Andrea M.</au><au>Richburg, Chris A.</au><au>Anderson, Anthony J.</au><au>Muir, Brittney C.</au><au>Czerniecki, Joseph</au><au>Steele, Katherine M.</au><au>Aubin, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>129</volume><spage>110749</spage><epage>110749</epage><pages>110749-110749</pages><artnum>110749</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Lower limb amputees experience gait impairments, in part due to limitations of prosthetic limbs and the lack of a functioning biarticular gastrocnemius (GAS) muscle. Energy storing prosthetic feet restore the function of the soleus, but not GAS. We propose a transtibial prosthesis that implements a spring mechanism to replicate the GAS. A prototype Biarticular Prosthesis (BP) was tested on seven participants with unilateral transtibial amputation. Participants walked on an instrumented treadmill with motion capture, first using their prescribed prosthesis, then with the BP in four different spring stiffness conditions. A custom OpenSim musculoskeletal model, including the BP, was used to estimate kinematics, joint torques, and muscle forces. Kinematic symmetry was evaluated by comparing the amputated and intact angles of the ankle, knee, and hip. The BP knee and ankle torques were compared to the intact GAS. Finally, work done by the BP spring was calculated at the ankle and knee. There were no significant differences between conditions in kinematic symmetry, indicating that the BP performs similarly to prescribed prostheses. When comparing the BP torques to intact GAS, higher spring stiffness better approximated peak GAS torques, but those peaks occurred earlier in the gait cycle. The BP spring did positive work on the knee joint and negative work on the ankle joint, and this work increased as BP spring stiffness increased. The BP has the potential to improve amputee gait compensations associated with the lack of biarticular GAS function, which may reduce their walking effort and improve quality of life.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34583198</pmid><doi>10.1016/j.jbiomech.2021.110749</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4128-9387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2021-12, Vol.129, p.110749-110749, Article 110749
issn 0021-9290
1873-2380
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9027914
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Amputation
Amputee
Amputees
Ankle
Artificial Limbs
Biarticular prosthesis
Biomechanical Phenomena
Data collection
Fitness equipment
Gait
Humans
Joints (anatomy)
Kinematics
Knee
Metabolism
Motion capture
Muscles
Power
Prostheses
Prosthesis
Prosthesis Design
Prosthetics
Quality of Life
Recovery of function
Stiffness
Symmetry
Torque
Treadmills
Walking
title Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20quasi-passive%20biarticular%20prosthesis%20to%20replicate%20gastrocnemius%20function%20in%20transtibial%20amputee%20gait&rft.jtitle=Journal%20of%20biomechanics&rft.au=Willson,%20Andrea%20M.&rft.date=2021-12-02&rft.volume=129&rft.spage=110749&rft.epage=110749&rft.pages=110749-110749&rft.artnum=110749&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2021.110749&rft_dat=%3Cproquest_pubme%3E2577733870%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607316364&rft_id=info:pmid/34583198&rft_els_id=S0021929021005157&rfr_iscdi=true