Colonic Microbial Abundances Predict Adenoma Formers
We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divid...
Gespeichert in:
Veröffentlicht in: | Annals of surgery 2023-04, Vol.277 (4), p.e817-e824 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e824 |
---|---|
container_issue | 4 |
container_start_page | e817 |
container_title | Annals of surgery |
container_volume | 277 |
creator | Watson, Katherine M. Gardner, Ivy H. Anand, Sudarshan Siemens, Kyla N. Sharpton, Thomas J. Kasschau, Kristin D. Dewey, Elizabeth N. Martindale, Robert Gaulke, Christopher A. Tsikitis, V. Liana |
description | We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation.
Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions.
Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures.
One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53).
Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation. |
doi_str_mv | 10.1097/SLA.0000000000005261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626228734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</originalsourceid><addsrcrecordid>eNpdkVtLwzAUgIMoOqf_QKSPvnTm2rQvwhjeYKKgPoc0PXXVtJlJ6_DfmzHvCeGQ5Jwvhy8IHRE8IbiQp_fz6QT_GoJmZAuNiKB5SgjH22gUT1nKC0b30H4IzxgTnmO5i_aYILQQOBshPnPWdY1JbhrjXdlom0zLoat0ZyAkdx6qxvTJtILOtTq5cL4FHw7QTq1tgMPPOEaPF-cPs6t0fnt5PZvOU8OxlGlGa1ZllSYl0NoYoWMgZVwUS05Fnhc1QFHqypCsyusiY6VmknLATAqqKRujsw13OZQtVAa63murlr5ptX9XTjfq703XLNSTe1MFpkwUPAJOPgHevQ4QetU2wYC1ugM3BEWzOGku2TqVb1KjhhA81N_PEKzWwlUUrv4Lj2XHv1v8Lvoy_MNdOdtHdy92WIFXC9C2X2x4mchTGjvGPG7S9adJ9gEV74sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626228734</pqid></control><display><type>article</type><title>Colonic Microbial Abundances Predict Adenoma Formers</title><source>MEDLINE</source><source>PubMed Central</source><source>Journals@Ovid Complete</source><creator>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</creator><creatorcontrib>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</creatorcontrib><description>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation.
Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions.
Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures.
One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53).
Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</description><identifier>ISSN: 0003-4932</identifier><identifier>EISSN: 1528-1140</identifier><identifier>DOI: 10.1097/SLA.0000000000005261</identifier><identifier>PMID: 35129506</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Adenoma - diagnosis ; Adenoma - microbiology ; Adenosine Deaminase ; Bacteria - genetics ; Feces - microbiology ; Gastrointestinal Microbiome ; Humans ; Intercellular Signaling Peptides and Proteins ; RNA, Ribosomal, 16S - genetics</subject><ispartof>Annals of surgery, 2023-04, Vol.277 (4), p.e817-e824</ispartof><rights>Lippincott Williams & Wilkins</rights><rights>Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</citedby><cites>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023594/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watson, Katherine M.</creatorcontrib><creatorcontrib>Gardner, Ivy H.</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Siemens, Kyla N.</creatorcontrib><creatorcontrib>Sharpton, Thomas J.</creatorcontrib><creatorcontrib>Kasschau, Kristin D.</creatorcontrib><creatorcontrib>Dewey, Elizabeth N.</creatorcontrib><creatorcontrib>Martindale, Robert</creatorcontrib><creatorcontrib>Gaulke, Christopher A.</creatorcontrib><creatorcontrib>Tsikitis, V. Liana</creatorcontrib><title>Colonic Microbial Abundances Predict Adenoma Formers</title><title>Annals of surgery</title><addtitle>Ann Surg</addtitle><description>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation.
Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions.
Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures.
One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53).
Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</description><subject>Adenoma - diagnosis</subject><subject>Adenoma - microbiology</subject><subject>Adenosine Deaminase</subject><subject>Bacteria - genetics</subject><subject>Feces - microbiology</subject><subject>Gastrointestinal Microbiome</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>RNA, Ribosomal, 16S - genetics</subject><issn>0003-4932</issn><issn>1528-1140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVtLwzAUgIMoOqf_QKSPvnTm2rQvwhjeYKKgPoc0PXXVtJlJ6_DfmzHvCeGQ5Jwvhy8IHRE8IbiQp_fz6QT_GoJmZAuNiKB5SgjH22gUT1nKC0b30H4IzxgTnmO5i_aYILQQOBshPnPWdY1JbhrjXdlom0zLoat0ZyAkdx6qxvTJtILOtTq5cL4FHw7QTq1tgMPPOEaPF-cPs6t0fnt5PZvOU8OxlGlGa1ZllSYl0NoYoWMgZVwUS05Fnhc1QFHqypCsyusiY6VmknLATAqqKRujsw13OZQtVAa63murlr5ptX9XTjfq703XLNSTe1MFpkwUPAJOPgHevQ4QetU2wYC1ugM3BEWzOGku2TqVb1KjhhA81N_PEKzWwlUUrv4Lj2XHv1v8Lvoy_MNdOdtHdy92WIFXC9C2X2x4mchTGjvGPG7S9adJ9gEV74sw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Watson, Katherine M.</creator><creator>Gardner, Ivy H.</creator><creator>Anand, Sudarshan</creator><creator>Siemens, Kyla N.</creator><creator>Sharpton, Thomas J.</creator><creator>Kasschau, Kristin D.</creator><creator>Dewey, Elizabeth N.</creator><creator>Martindale, Robert</creator><creator>Gaulke, Christopher A.</creator><creator>Tsikitis, V. Liana</creator><general>Lippincott Williams & Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230401</creationdate><title>Colonic Microbial Abundances Predict Adenoma Formers</title><author>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenoma - diagnosis</topic><topic>Adenoma - microbiology</topic><topic>Adenosine Deaminase</topic><topic>Bacteria - genetics</topic><topic>Feces - microbiology</topic><topic>Gastrointestinal Microbiome</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>RNA, Ribosomal, 16S - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Katherine M.</creatorcontrib><creatorcontrib>Gardner, Ivy H.</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Siemens, Kyla N.</creatorcontrib><creatorcontrib>Sharpton, Thomas J.</creatorcontrib><creatorcontrib>Kasschau, Kristin D.</creatorcontrib><creatorcontrib>Dewey, Elizabeth N.</creatorcontrib><creatorcontrib>Martindale, Robert</creatorcontrib><creatorcontrib>Gaulke, Christopher A.</creatorcontrib><creatorcontrib>Tsikitis, V. Liana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Katherine M.</au><au>Gardner, Ivy H.</au><au>Anand, Sudarshan</au><au>Siemens, Kyla N.</au><au>Sharpton, Thomas J.</au><au>Kasschau, Kristin D.</au><au>Dewey, Elizabeth N.</au><au>Martindale, Robert</au><au>Gaulke, Christopher A.</au><au>Tsikitis, V. Liana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colonic Microbial Abundances Predict Adenoma Formers</atitle><jtitle>Annals of surgery</jtitle><addtitle>Ann Surg</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>277</volume><issue>4</issue><spage>e817</spage><epage>e824</epage><pages>e817-e824</pages><issn>0003-4932</issn><eissn>1528-1140</eissn><abstract>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation.
Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions.
Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures.
One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53).
Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>35129506</pmid><doi>10.1097/SLA.0000000000005261</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4932 |
ispartof | Annals of surgery, 2023-04, Vol.277 (4), p.e817-e824 |
issn | 0003-4932 1528-1140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023594 |
source | MEDLINE; PubMed Central; Journals@Ovid Complete |
subjects | Adenoma - diagnosis Adenoma - microbiology Adenosine Deaminase Bacteria - genetics Feces - microbiology Gastrointestinal Microbiome Humans Intercellular Signaling Peptides and Proteins RNA, Ribosomal, 16S - genetics |
title | Colonic Microbial Abundances Predict Adenoma Formers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colonic%20Microbial%20Abundances%20Predict%20Adenoma%20Formers&rft.jtitle=Annals%20of%20surgery&rft.au=Watson,%20Katherine%20M.&rft.date=2023-04-01&rft.volume=277&rft.issue=4&rft.spage=e817&rft.epage=e824&rft.pages=e817-e824&rft.issn=0003-4932&rft.eissn=1528-1140&rft_id=info:doi/10.1097/SLA.0000000000005261&rft_dat=%3Cproquest_pubme%3E2626228734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626228734&rft_id=info:pmid/35129506&rfr_iscdi=true |