Colonic Microbial Abundances Predict Adenoma Formers

We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of surgery 2023-04, Vol.277 (4), p.e817-e824
Hauptverfasser: Watson, Katherine M., Gardner, Ivy H., Anand, Sudarshan, Siemens, Kyla N., Sharpton, Thomas J., Kasschau, Kristin D., Dewey, Elizabeth N., Martindale, Robert, Gaulke, Christopher A., Tsikitis, V. Liana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e824
container_issue 4
container_start_page e817
container_title Annals of surgery
container_volume 277
creator Watson, Katherine M.
Gardner, Ivy H.
Anand, Sudarshan
Siemens, Kyla N.
Sharpton, Thomas J.
Kasschau, Kristin D.
Dewey, Elizabeth N.
Martindale, Robert
Gaulke, Christopher A.
Tsikitis, V. Liana
description We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.
doi_str_mv 10.1097/SLA.0000000000005261
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626228734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</originalsourceid><addsrcrecordid>eNpdkVtLwzAUgIMoOqf_QKSPvnTm2rQvwhjeYKKgPoc0PXXVtJlJ6_DfmzHvCeGQ5Jwvhy8IHRE8IbiQp_fz6QT_GoJmZAuNiKB5SgjH22gUT1nKC0b30H4IzxgTnmO5i_aYILQQOBshPnPWdY1JbhrjXdlom0zLoat0ZyAkdx6qxvTJtILOtTq5cL4FHw7QTq1tgMPPOEaPF-cPs6t0fnt5PZvOU8OxlGlGa1ZllSYl0NoYoWMgZVwUS05Fnhc1QFHqypCsyusiY6VmknLATAqqKRujsw13OZQtVAa63murlr5ptX9XTjfq703XLNSTe1MFpkwUPAJOPgHevQ4QetU2wYC1ugM3BEWzOGku2TqVb1KjhhA81N_PEKzWwlUUrv4Lj2XHv1v8Lvoy_MNdOdtHdy92WIFXC9C2X2x4mchTGjvGPG7S9adJ9gEV74sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626228734</pqid></control><display><type>article</type><title>Colonic Microbial Abundances Predict Adenoma Formers</title><source>MEDLINE</source><source>PubMed Central</source><source>Journals@Ovid Complete</source><creator>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</creator><creatorcontrib>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</creatorcontrib><description>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</description><identifier>ISSN: 0003-4932</identifier><identifier>EISSN: 1528-1140</identifier><identifier>DOI: 10.1097/SLA.0000000000005261</identifier><identifier>PMID: 35129506</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Adenoma - diagnosis ; Adenoma - microbiology ; Adenosine Deaminase ; Bacteria - genetics ; Feces - microbiology ; Gastrointestinal Microbiome ; Humans ; Intercellular Signaling Peptides and Proteins ; RNA, Ribosomal, 16S - genetics</subject><ispartof>Annals of surgery, 2023-04, Vol.277 (4), p.e817-e824</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</citedby><cites>FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023594/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watson, Katherine M.</creatorcontrib><creatorcontrib>Gardner, Ivy H.</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Siemens, Kyla N.</creatorcontrib><creatorcontrib>Sharpton, Thomas J.</creatorcontrib><creatorcontrib>Kasschau, Kristin D.</creatorcontrib><creatorcontrib>Dewey, Elizabeth N.</creatorcontrib><creatorcontrib>Martindale, Robert</creatorcontrib><creatorcontrib>Gaulke, Christopher A.</creatorcontrib><creatorcontrib>Tsikitis, V. Liana</creatorcontrib><title>Colonic Microbial Abundances Predict Adenoma Formers</title><title>Annals of surgery</title><addtitle>Ann Surg</addtitle><description>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</description><subject>Adenoma - diagnosis</subject><subject>Adenoma - microbiology</subject><subject>Adenosine Deaminase</subject><subject>Bacteria - genetics</subject><subject>Feces - microbiology</subject><subject>Gastrointestinal Microbiome</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>RNA, Ribosomal, 16S - genetics</subject><issn>0003-4932</issn><issn>1528-1140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVtLwzAUgIMoOqf_QKSPvnTm2rQvwhjeYKKgPoc0PXXVtJlJ6_DfmzHvCeGQ5Jwvhy8IHRE8IbiQp_fz6QT_GoJmZAuNiKB5SgjH22gUT1nKC0b30H4IzxgTnmO5i_aYILQQOBshPnPWdY1JbhrjXdlom0zLoat0ZyAkdx6qxvTJtILOtTq5cL4FHw7QTq1tgMPPOEaPF-cPs6t0fnt5PZvOU8OxlGlGa1ZllSYl0NoYoWMgZVwUS05Fnhc1QFHqypCsyusiY6VmknLATAqqKRujsw13OZQtVAa63murlr5ptX9XTjfq703XLNSTe1MFpkwUPAJOPgHevQ4QetU2wYC1ugM3BEWzOGku2TqVb1KjhhA81N_PEKzWwlUUrv4Lj2XHv1v8Lvoy_MNdOdtHdy92WIFXC9C2X2x4mchTGjvGPG7S9adJ9gEV74sw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Watson, Katherine M.</creator><creator>Gardner, Ivy H.</creator><creator>Anand, Sudarshan</creator><creator>Siemens, Kyla N.</creator><creator>Sharpton, Thomas J.</creator><creator>Kasschau, Kristin D.</creator><creator>Dewey, Elizabeth N.</creator><creator>Martindale, Robert</creator><creator>Gaulke, Christopher A.</creator><creator>Tsikitis, V. Liana</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230401</creationdate><title>Colonic Microbial Abundances Predict Adenoma Formers</title><author>Watson, Katherine M. ; Gardner, Ivy H. ; Anand, Sudarshan ; Siemens, Kyla N. ; Sharpton, Thomas J. ; Kasschau, Kristin D. ; Dewey, Elizabeth N. ; Martindale, Robert ; Gaulke, Christopher A. ; Tsikitis, V. Liana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4077-62f3d6da1be2fcc5ae2f1b2f1207425889fee9badc16d8f963ba3724e03752a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenoma - diagnosis</topic><topic>Adenoma - microbiology</topic><topic>Adenosine Deaminase</topic><topic>Bacteria - genetics</topic><topic>Feces - microbiology</topic><topic>Gastrointestinal Microbiome</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>RNA, Ribosomal, 16S - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Katherine M.</creatorcontrib><creatorcontrib>Gardner, Ivy H.</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Siemens, Kyla N.</creatorcontrib><creatorcontrib>Sharpton, Thomas J.</creatorcontrib><creatorcontrib>Kasschau, Kristin D.</creatorcontrib><creatorcontrib>Dewey, Elizabeth N.</creatorcontrib><creatorcontrib>Martindale, Robert</creatorcontrib><creatorcontrib>Gaulke, Christopher A.</creatorcontrib><creatorcontrib>Tsikitis, V. Liana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Katherine M.</au><au>Gardner, Ivy H.</au><au>Anand, Sudarshan</au><au>Siemens, Kyla N.</au><au>Sharpton, Thomas J.</au><au>Kasschau, Kristin D.</au><au>Dewey, Elizabeth N.</au><au>Martindale, Robert</au><au>Gaulke, Christopher A.</au><au>Tsikitis, V. Liana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colonic Microbial Abundances Predict Adenoma Formers</atitle><jtitle>Annals of surgery</jtitle><addtitle>Ann Surg</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>277</volume><issue>4</issue><spage>e817</spage><epage>e824</epage><pages>e817-e824</pages><issn>0003-4932</issn><eissn>1528-1140</eissn><abstract>We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>35129506</pmid><doi>10.1097/SLA.0000000000005261</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-4932
ispartof Annals of surgery, 2023-04, Vol.277 (4), p.e817-e824
issn 0003-4932
1528-1140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9023594
source MEDLINE; PubMed Central; Journals@Ovid Complete
subjects Adenoma - diagnosis
Adenoma - microbiology
Adenosine Deaminase
Bacteria - genetics
Feces - microbiology
Gastrointestinal Microbiome
Humans
Intercellular Signaling Peptides and Proteins
RNA, Ribosomal, 16S - genetics
title Colonic Microbial Abundances Predict Adenoma Formers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colonic%20Microbial%20Abundances%20Predict%20Adenoma%20Formers&rft.jtitle=Annals%20of%20surgery&rft.au=Watson,%20Katherine%20M.&rft.date=2023-04-01&rft.volume=277&rft.issue=4&rft.spage=e817&rft.epage=e824&rft.pages=e817-e824&rft.issn=0003-4932&rft.eissn=1528-1140&rft_id=info:doi/10.1097/SLA.0000000000005261&rft_dat=%3Cproquest_pubme%3E2626228734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626228734&rft_id=info:pmid/35129506&rfr_iscdi=true