Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head
Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinica...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2022-08, Vol.40 (8), p.1801-1809 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1809 |
---|---|
container_issue | 8 |
container_start_page | 1801 |
container_title | Journal of orthopaedic research |
container_volume | 40 |
creator | Lui, Elaine Maruyama, Masahiro Guzman, Roberto A. Moeinzadeh, Seyedsina Pan, Chi‐Chun Pius, Alexa K. Quig, Madison S. V. Wong, Laurel E. Goodman, Stuart B. Yang, Yunzhi P. |
description | Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification. |
doi_str_mv | 10.1002/jor.25201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584437540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVpaaZpFn2BomW7cKIfS7Y2hRD6FwKB0kJ2QpauZhRkybHsFL99PZk0NIuuhKSP757LQegdJaeUEHZ2m8dTJhihL9CGClFXgjU3L9GGNFxWhEl5hN6UcksIaShrX6MjXstGCiU3KJ4PQ1xC2mIHMOAIZkz725Tx3WzSFPyCoR-mBUdj52QAh4R3oUw55m2wuICdQk4FZ49zmSAnsGMu4eFh2gH20OfRRLwD496iV97EAieP5zH69eXzz4tv1dX11-8X51eVramgVcuV87zreMtAOckaURvfWmW9lAqI6gQYBc55x6mRXUOVIa5TQnpCnbSSH6NPB-8wdz04C2laI-hhDL0ZF51N0M9_Utjpbb7XijDKWb0KPjwKxnw3Q5l0H4qFGE2CPBfNRFvXfM1FVvTjAd2vXUbwT2Mo0ft29NqOfmhnZd__m-uJ_FvHCpwdgN8hwvJ_k768_nFQ_gG-bJ04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584437540</pqid></control><display><type>article</type><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</creator><creatorcontrib>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</creatorcontrib><description>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.25201</identifier><identifier>PMID: 34676596</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Artificial Intelligence ; Deep Learning ; Disease Models, Animal ; Femur Head - pathology ; Femur Head Necrosis - pathology ; histology ; Humans ; imaging ; neural network ; osteonecrosis</subject><ispartof>Journal of orthopaedic research, 2022-08, Vol.40 (8), p.1801-1809</ispartof><rights>2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC</rights><rights>2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</citedby><cites>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</cites><orcidid>0000-0002-1919-3717 ; 0000-0002-1339-0023 ; 0000-0001-7967-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.25201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.25201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34676596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lui, Elaine</creatorcontrib><creatorcontrib>Maruyama, Masahiro</creatorcontrib><creatorcontrib>Guzman, Roberto A.</creatorcontrib><creatorcontrib>Moeinzadeh, Seyedsina</creatorcontrib><creatorcontrib>Pan, Chi‐Chun</creatorcontrib><creatorcontrib>Pius, Alexa K.</creatorcontrib><creatorcontrib>Quig, Madison S. V.</creatorcontrib><creatorcontrib>Wong, Laurel E.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Yang, Yunzhi P.</creatorcontrib><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><title>Journal of orthopaedic research</title><addtitle>J Orthop Res</addtitle><description>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Deep Learning</subject><subject>Disease Models, Animal</subject><subject>Femur Head - pathology</subject><subject>Femur Head Necrosis - pathology</subject><subject>histology</subject><subject>Humans</subject><subject>imaging</subject><subject>neural network</subject><subject>osteonecrosis</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1q3DAUhUVpaaZpFn2BomW7cKIfS7Y2hRD6FwKB0kJ2QpauZhRkybHsFL99PZk0NIuuhKSP757LQegdJaeUEHZ2m8dTJhihL9CGClFXgjU3L9GGNFxWhEl5hN6UcksIaShrX6MjXstGCiU3KJ4PQ1xC2mIHMOAIZkz725Tx3WzSFPyCoR-mBUdj52QAh4R3oUw55m2wuICdQk4FZ49zmSAnsGMu4eFh2gH20OfRRLwD496iV97EAieP5zH69eXzz4tv1dX11-8X51eVramgVcuV87zreMtAOckaURvfWmW9lAqI6gQYBc55x6mRXUOVIa5TQnpCnbSSH6NPB-8wdz04C2laI-hhDL0ZF51N0M9_Utjpbb7XijDKWb0KPjwKxnw3Q5l0H4qFGE2CPBfNRFvXfM1FVvTjAd2vXUbwT2Mo0ft29NqOfmhnZd__m-uJ_FvHCpwdgN8hwvJ_k768_nFQ_gG-bJ04</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Lui, Elaine</creator><creator>Maruyama, Masahiro</creator><creator>Guzman, Roberto A.</creator><creator>Moeinzadeh, Seyedsina</creator><creator>Pan, Chi‐Chun</creator><creator>Pius, Alexa K.</creator><creator>Quig, Madison S. V.</creator><creator>Wong, Laurel E.</creator><creator>Goodman, Stuart B.</creator><creator>Yang, Yunzhi P.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1919-3717</orcidid><orcidid>https://orcid.org/0000-0002-1339-0023</orcidid><orcidid>https://orcid.org/0000-0001-7967-6596</orcidid></search><sort><creationdate>202208</creationdate><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><author>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Deep Learning</topic><topic>Disease Models, Animal</topic><topic>Femur Head - pathology</topic><topic>Femur Head Necrosis - pathology</topic><topic>histology</topic><topic>Humans</topic><topic>imaging</topic><topic>neural network</topic><topic>osteonecrosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lui, Elaine</creatorcontrib><creatorcontrib>Maruyama, Masahiro</creatorcontrib><creatorcontrib>Guzman, Roberto A.</creatorcontrib><creatorcontrib>Moeinzadeh, Seyedsina</creatorcontrib><creatorcontrib>Pan, Chi‐Chun</creatorcontrib><creatorcontrib>Pius, Alexa K.</creatorcontrib><creatorcontrib>Quig, Madison S. V.</creatorcontrib><creatorcontrib>Wong, Laurel E.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Yang, Yunzhi P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lui, Elaine</au><au>Maruyama, Masahiro</au><au>Guzman, Roberto A.</au><au>Moeinzadeh, Seyedsina</au><au>Pan, Chi‐Chun</au><au>Pius, Alexa K.</au><au>Quig, Madison S. V.</au><au>Wong, Laurel E.</au><au>Goodman, Stuart B.</au><au>Yang, Yunzhi P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J Orthop Res</addtitle><date>2022-08</date><risdate>2022</risdate><volume>40</volume><issue>8</issue><spage>1801</spage><epage>1809</epage><pages>1801-1809</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</abstract><cop>United States</cop><pmid>34676596</pmid><doi>10.1002/jor.25201</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1919-3717</orcidid><orcidid>https://orcid.org/0000-0002-1339-0023</orcidid><orcidid>https://orcid.org/0000-0001-7967-6596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2022-08, Vol.40 (8), p.1801-1809 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021324 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Animals Artificial Intelligence Deep Learning Disease Models, Animal Femur Head - pathology Femur Head Necrosis - pathology histology Humans imaging neural network osteonecrosis |
title | Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20deep%20learning%20to%20quantify%20empty%20lacunae%20in%20histologic%20sections%20of%20osteonecrosis%20of%20the%20femoral%20head&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Lui,%20Elaine&rft.date=2022-08&rft.volume=40&rft.issue=8&rft.spage=1801&rft.epage=1809&rft.pages=1801-1809&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.25201&rft_dat=%3Cproquest_pubme%3E2584437540%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584437540&rft_id=info:pmid/34676596&rfr_iscdi=true |