Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head

Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2022-08, Vol.40 (8), p.1801-1809
Hauptverfasser: Lui, Elaine, Maruyama, Masahiro, Guzman, Roberto A., Moeinzadeh, Seyedsina, Pan, Chi‐Chun, Pius, Alexa K., Quig, Madison S. V., Wong, Laurel E., Goodman, Stuart B., Yang, Yunzhi P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1809
container_issue 8
container_start_page 1801
container_title Journal of orthopaedic research
container_volume 40
creator Lui, Elaine
Maruyama, Masahiro
Guzman, Roberto A.
Moeinzadeh, Seyedsina
Pan, Chi‐Chun
Pius, Alexa K.
Quig, Madison S. V.
Wong, Laurel E.
Goodman, Stuart B.
Yang, Yunzhi P.
description Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.
doi_str_mv 10.1002/jor.25201
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584437540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVpaaZpFn2BomW7cKIfS7Y2hRD6FwKB0kJ2QpauZhRkybHsFL99PZk0NIuuhKSP757LQegdJaeUEHZ2m8dTJhihL9CGClFXgjU3L9GGNFxWhEl5hN6UcksIaShrX6MjXstGCiU3KJ4PQ1xC2mIHMOAIZkz725Tx3WzSFPyCoR-mBUdj52QAh4R3oUw55m2wuICdQk4FZ49zmSAnsGMu4eFh2gH20OfRRLwD496iV97EAieP5zH69eXzz4tv1dX11-8X51eVramgVcuV87zreMtAOckaURvfWmW9lAqI6gQYBc55x6mRXUOVIa5TQnpCnbSSH6NPB-8wdz04C2laI-hhDL0ZF51N0M9_Utjpbb7XijDKWb0KPjwKxnw3Q5l0H4qFGE2CPBfNRFvXfM1FVvTjAd2vXUbwT2Mo0ft29NqOfmhnZd__m-uJ_FvHCpwdgN8hwvJ_k768_nFQ_gG-bJ04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584437540</pqid></control><display><type>article</type><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</creator><creatorcontrib>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</creatorcontrib><description>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.25201</identifier><identifier>PMID: 34676596</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Artificial Intelligence ; Deep Learning ; Disease Models, Animal ; Femur Head - pathology ; Femur Head Necrosis - pathology ; histology ; Humans ; imaging ; neural network ; osteonecrosis</subject><ispartof>Journal of orthopaedic research, 2022-08, Vol.40 (8), p.1801-1809</ispartof><rights>2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC</rights><rights>2021 Orthopaedic Research Society. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</citedby><cites>FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</cites><orcidid>0000-0002-1919-3717 ; 0000-0002-1339-0023 ; 0000-0001-7967-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.25201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.25201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34676596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lui, Elaine</creatorcontrib><creatorcontrib>Maruyama, Masahiro</creatorcontrib><creatorcontrib>Guzman, Roberto A.</creatorcontrib><creatorcontrib>Moeinzadeh, Seyedsina</creatorcontrib><creatorcontrib>Pan, Chi‐Chun</creatorcontrib><creatorcontrib>Pius, Alexa K.</creatorcontrib><creatorcontrib>Quig, Madison S. V.</creatorcontrib><creatorcontrib>Wong, Laurel E.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Yang, Yunzhi P.</creatorcontrib><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><title>Journal of orthopaedic research</title><addtitle>J Orthop Res</addtitle><description>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Deep Learning</subject><subject>Disease Models, Animal</subject><subject>Femur Head - pathology</subject><subject>Femur Head Necrosis - pathology</subject><subject>histology</subject><subject>Humans</subject><subject>imaging</subject><subject>neural network</subject><subject>osteonecrosis</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1q3DAUhUVpaaZpFn2BomW7cKIfS7Y2hRD6FwKB0kJ2QpauZhRkybHsFL99PZk0NIuuhKSP757LQegdJaeUEHZ2m8dTJhihL9CGClFXgjU3L9GGNFxWhEl5hN6UcksIaShrX6MjXstGCiU3KJ4PQ1xC2mIHMOAIZkz725Tx3WzSFPyCoR-mBUdj52QAh4R3oUw55m2wuICdQk4FZ49zmSAnsGMu4eFh2gH20OfRRLwD496iV97EAieP5zH69eXzz4tv1dX11-8X51eVramgVcuV87zreMtAOckaURvfWmW9lAqI6gQYBc55x6mRXUOVIa5TQnpCnbSSH6NPB-8wdz04C2laI-hhDL0ZF51N0M9_Utjpbb7XijDKWb0KPjwKxnw3Q5l0H4qFGE2CPBfNRFvXfM1FVvTjAd2vXUbwT2Mo0ft29NqOfmhnZd__m-uJ_FvHCpwdgN8hwvJ_k768_nFQ_gG-bJ04</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Lui, Elaine</creator><creator>Maruyama, Masahiro</creator><creator>Guzman, Roberto A.</creator><creator>Moeinzadeh, Seyedsina</creator><creator>Pan, Chi‐Chun</creator><creator>Pius, Alexa K.</creator><creator>Quig, Madison S. V.</creator><creator>Wong, Laurel E.</creator><creator>Goodman, Stuart B.</creator><creator>Yang, Yunzhi P.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1919-3717</orcidid><orcidid>https://orcid.org/0000-0002-1339-0023</orcidid><orcidid>https://orcid.org/0000-0001-7967-6596</orcidid></search><sort><creationdate>202208</creationdate><title>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</title><author>Lui, Elaine ; Maruyama, Masahiro ; Guzman, Roberto A. ; Moeinzadeh, Seyedsina ; Pan, Chi‐Chun ; Pius, Alexa K. ; Quig, Madison S. V. ; Wong, Laurel E. ; Goodman, Stuart B. ; Yang, Yunzhi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4151-839df3bb382e9d62754af8c9cf669e09b5ea9eddfd31a6b719a0db956f01d6c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Deep Learning</topic><topic>Disease Models, Animal</topic><topic>Femur Head - pathology</topic><topic>Femur Head Necrosis - pathology</topic><topic>histology</topic><topic>Humans</topic><topic>imaging</topic><topic>neural network</topic><topic>osteonecrosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lui, Elaine</creatorcontrib><creatorcontrib>Maruyama, Masahiro</creatorcontrib><creatorcontrib>Guzman, Roberto A.</creatorcontrib><creatorcontrib>Moeinzadeh, Seyedsina</creatorcontrib><creatorcontrib>Pan, Chi‐Chun</creatorcontrib><creatorcontrib>Pius, Alexa K.</creatorcontrib><creatorcontrib>Quig, Madison S. V.</creatorcontrib><creatorcontrib>Wong, Laurel E.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Yang, Yunzhi P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lui, Elaine</au><au>Maruyama, Masahiro</au><au>Guzman, Roberto A.</au><au>Moeinzadeh, Seyedsina</au><au>Pan, Chi‐Chun</au><au>Pius, Alexa K.</au><au>Quig, Madison S. V.</au><au>Wong, Laurel E.</au><au>Goodman, Stuart B.</au><au>Yang, Yunzhi P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J Orthop Res</addtitle><date>2022-08</date><risdate>2022</risdate><volume>40</volume><issue>8</issue><spage>1801</spage><epage>1809</epage><pages>1801-1809</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster‐RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.</abstract><cop>United States</cop><pmid>34676596</pmid><doi>10.1002/jor.25201</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1919-3717</orcidid><orcidid>https://orcid.org/0000-0002-1339-0023</orcidid><orcidid>https://orcid.org/0000-0001-7967-6596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-0266
ispartof Journal of orthopaedic research, 2022-08, Vol.40 (8), p.1801-1809
issn 0736-0266
1554-527X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021324
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Animals
Artificial Intelligence
Deep Learning
Disease Models, Animal
Femur Head - pathology
Femur Head Necrosis - pathology
histology
Humans
imaging
neural network
osteonecrosis
title Applying deep learning to quantify empty lacunae in histologic sections of osteonecrosis of the femoral head
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20deep%20learning%20to%20quantify%20empty%20lacunae%20in%20histologic%20sections%20of%20osteonecrosis%20of%20the%20femoral%20head&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Lui,%20Elaine&rft.date=2022-08&rft.volume=40&rft.issue=8&rft.spage=1801&rft.epage=1809&rft.pages=1801-1809&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.25201&rft_dat=%3Cproquest_pubme%3E2584437540%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584437540&rft_id=info:pmid/34676596&rfr_iscdi=true