Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles
The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothes...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-02, Vol.16 (2), p.1940-1953 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1953 |
---|---|
container_issue | 2 |
container_start_page | 1940 |
container_title | ACS nano |
container_volume | 16 |
creator | Tian, Tian Liang, Ruyu Erel-Akbaba, Gulsah Saad, Lorenzo Obeid, Pierre J Gao, Jun Chiocca, E. Antonio Weissleder, Ralph Tannous, Bakhos A |
description | The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications. |
doi_str_mv | 10.1021/acsnano.1c05505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624190245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</originalsourceid><addsrcrecordid>eNp1kcFPwjAYxRujEUTP3kyPJmbQFrqtFxMliCQYjVHjyabrOiiOFttN5b-3CBI9eGqT9_te39cHwDFGbYwI7gjpjTC2jSWiFNEd0MSsG0cojZ93t3eKG-DA-xlCNEmTeB80uhQxhhPSBC-j-bw2CvanSr4urDYVHJmpznSlrYHawOHlDbxzeq5y-KGrKbwXuRbfYraEAzPRRikXxMFn5YRUZVmXwsEn5bUslT8Ee4UovTranC3weDV46F9H49vhqH8xjkSPsCrKkZSECCqJLJJCplilQpAE590UU8kyKfKUFSFwihnJBUpiSnIi4yRlGS5I0m2B87Xvos5CVKlMSFPyRQgu3JJboflfxegpn9h3zhBBPYqDwenGwNm3WvmKz7VfrSOMsrXnJCY9HOAeDWhnjUpnvXeq2D6DEV-1wjet8E0rYeLkd7ot_1NDAM7WQJjkM1s7Ez7rX7sv52WaZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624190245</pqid></control><display><type>article</type><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</creator><creatorcontrib>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</creatorcontrib><description>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c05505</identifier><identifier>PMID: 35099172</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; B7-H1 Antigen ; Brain Neoplasms - drug therapy ; Brain Neoplasms - radiotherapy ; Extracellular Vesicles - metabolism ; Glioblastoma - drug therapy ; Glioblastoma - radiotherapy ; Immune Checkpoint Inhibitors ; Mice ; Tumor Microenvironment</subject><ispartof>ACS nano, 2022-02, Vol.16 (2), p.1940-1953</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</citedby><cites>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</cites><orcidid>0000-0001-7062-0684 ; 0000-0001-7879-1445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c05505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c05505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35099172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Liang, Ruyu</creatorcontrib><creatorcontrib>Erel-Akbaba, Gulsah</creatorcontrib><creatorcontrib>Saad, Lorenzo</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chiocca, E. Antonio</creatorcontrib><creatorcontrib>Weissleder, Ralph</creatorcontrib><creatorcontrib>Tannous, Bakhos A</creatorcontrib><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</description><subject>Animals</subject><subject>B7-H1 Antigen</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - radiotherapy</subject><subject>Immune Checkpoint Inhibitors</subject><subject>Mice</subject><subject>Tumor Microenvironment</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPwjAYxRujEUTP3kyPJmbQFrqtFxMliCQYjVHjyabrOiiOFttN5b-3CBI9eGqT9_te39cHwDFGbYwI7gjpjTC2jSWiFNEd0MSsG0cojZ93t3eKG-DA-xlCNEmTeB80uhQxhhPSBC-j-bw2CvanSr4urDYVHJmpznSlrYHawOHlDbxzeq5y-KGrKbwXuRbfYraEAzPRRikXxMFn5YRUZVmXwsEn5bUslT8Ee4UovTranC3weDV46F9H49vhqH8xjkSPsCrKkZSECCqJLJJCplilQpAE590UU8kyKfKUFSFwihnJBUpiSnIi4yRlGS5I0m2B87Xvos5CVKlMSFPyRQgu3JJboflfxegpn9h3zhBBPYqDwenGwNm3WvmKz7VfrSOMsrXnJCY9HOAeDWhnjUpnvXeq2D6DEV-1wjet8E0rYeLkd7ot_1NDAM7WQJjkM1s7Ez7rX7sv52WaZg</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Tian, Tian</creator><creator>Liang, Ruyu</creator><creator>Erel-Akbaba, Gulsah</creator><creator>Saad, Lorenzo</creator><creator>Obeid, Pierre J</creator><creator>Gao, Jun</creator><creator>Chiocca, E. Antonio</creator><creator>Weissleder, Ralph</creator><creator>Tannous, Bakhos A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7062-0684</orcidid><orcidid>https://orcid.org/0000-0001-7879-1445</orcidid></search><sort><creationdate>20220222</creationdate><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><author>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>B7-H1 Antigen</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - radiotherapy</topic><topic>Immune Checkpoint Inhibitors</topic><topic>Mice</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Liang, Ruyu</creatorcontrib><creatorcontrib>Erel-Akbaba, Gulsah</creatorcontrib><creatorcontrib>Saad, Lorenzo</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chiocca, E. Antonio</creatorcontrib><creatorcontrib>Weissleder, Ralph</creatorcontrib><creatorcontrib>Tannous, Bakhos A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Tian</au><au>Liang, Ruyu</au><au>Erel-Akbaba, Gulsah</au><au>Saad, Lorenzo</au><au>Obeid, Pierre J</au><au>Gao, Jun</au><au>Chiocca, E. Antonio</au><au>Weissleder, Ralph</au><au>Tannous, Bakhos A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1940</spage><epage>1953</epage><pages>1940-1953</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35099172</pmid><doi>10.1021/acsnano.1c05505</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7062-0684</orcidid><orcidid>https://orcid.org/0000-0001-7879-1445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-02, Vol.16 (2), p.1940-1953 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020451 |
source | ACS Publications; MEDLINE |
subjects | Animals B7-H1 Antigen Brain Neoplasms - drug therapy Brain Neoplasms - radiotherapy Extracellular Vesicles - metabolism Glioblastoma - drug therapy Glioblastoma - radiotherapy Immune Checkpoint Inhibitors Mice Tumor Microenvironment |
title | Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20Checkpoint%20Inhibition%20in%20GBM%20Primed%20with%20Radiation%20by%20Engineered%20Extracellular%20Vesicles&rft.jtitle=ACS%20nano&rft.au=Tian,%20Tian&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=1940&rft.epage=1953&rft.pages=1940-1953&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c05505&rft_dat=%3Cproquest_pubme%3E2624190245%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624190245&rft_id=info:pmid/35099172&rfr_iscdi=true |