Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles

The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-02, Vol.16 (2), p.1940-1953
Hauptverfasser: Tian, Tian, Liang, Ruyu, Erel-Akbaba, Gulsah, Saad, Lorenzo, Obeid, Pierre J, Gao, Jun, Chiocca, E. Antonio, Weissleder, Ralph, Tannous, Bakhos A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1953
container_issue 2
container_start_page 1940
container_title ACS nano
container_volume 16
creator Tian, Tian
Liang, Ruyu
Erel-Akbaba, Gulsah
Saad, Lorenzo
Obeid, Pierre J
Gao, Jun
Chiocca, E. Antonio
Weissleder, Ralph
Tannous, Bakhos A
description The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.
doi_str_mv 10.1021/acsnano.1c05505
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624190245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</originalsourceid><addsrcrecordid>eNp1kcFPwjAYxRujEUTP3kyPJmbQFrqtFxMliCQYjVHjyabrOiiOFttN5b-3CBI9eGqT9_te39cHwDFGbYwI7gjpjTC2jSWiFNEd0MSsG0cojZ93t3eKG-DA-xlCNEmTeB80uhQxhhPSBC-j-bw2CvanSr4urDYVHJmpznSlrYHawOHlDbxzeq5y-KGrKbwXuRbfYraEAzPRRikXxMFn5YRUZVmXwsEn5bUslT8Ee4UovTranC3weDV46F9H49vhqH8xjkSPsCrKkZSECCqJLJJCplilQpAE590UU8kyKfKUFSFwihnJBUpiSnIi4yRlGS5I0m2B87Xvos5CVKlMSFPyRQgu3JJboflfxegpn9h3zhBBPYqDwenGwNm3WvmKz7VfrSOMsrXnJCY9HOAeDWhnjUpnvXeq2D6DEV-1wjet8E0rYeLkd7ot_1NDAM7WQJjkM1s7Ez7rX7sv52WaZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624190245</pqid></control><display><type>article</type><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</creator><creatorcontrib>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</creatorcontrib><description>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c05505</identifier><identifier>PMID: 35099172</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; B7-H1 Antigen ; Brain Neoplasms - drug therapy ; Brain Neoplasms - radiotherapy ; Extracellular Vesicles - metabolism ; Glioblastoma - drug therapy ; Glioblastoma - radiotherapy ; Immune Checkpoint Inhibitors ; Mice ; Tumor Microenvironment</subject><ispartof>ACS nano, 2022-02, Vol.16 (2), p.1940-1953</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</citedby><cites>FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</cites><orcidid>0000-0001-7062-0684 ; 0000-0001-7879-1445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c05505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c05505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35099172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Liang, Ruyu</creatorcontrib><creatorcontrib>Erel-Akbaba, Gulsah</creatorcontrib><creatorcontrib>Saad, Lorenzo</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chiocca, E. Antonio</creatorcontrib><creatorcontrib>Weissleder, Ralph</creatorcontrib><creatorcontrib>Tannous, Bakhos A</creatorcontrib><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</description><subject>Animals</subject><subject>B7-H1 Antigen</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - radiotherapy</subject><subject>Immune Checkpoint Inhibitors</subject><subject>Mice</subject><subject>Tumor Microenvironment</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPwjAYxRujEUTP3kyPJmbQFrqtFxMliCQYjVHjyabrOiiOFttN5b-3CBI9eGqT9_te39cHwDFGbYwI7gjpjTC2jSWiFNEd0MSsG0cojZ93t3eKG-DA-xlCNEmTeB80uhQxhhPSBC-j-bw2CvanSr4urDYVHJmpznSlrYHawOHlDbxzeq5y-KGrKbwXuRbfYraEAzPRRikXxMFn5YRUZVmXwsEn5bUslT8Ee4UovTranC3weDV46F9H49vhqH8xjkSPsCrKkZSECCqJLJJCplilQpAE590UU8kyKfKUFSFwihnJBUpiSnIi4yRlGS5I0m2B87Xvos5CVKlMSFPyRQgu3JJboflfxegpn9h3zhBBPYqDwenGwNm3WvmKz7VfrSOMsrXnJCY9HOAeDWhnjUpnvXeq2D6DEV-1wjet8E0rYeLkd7ot_1NDAM7WQJjkM1s7Ez7rX7sv52WaZg</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Tian, Tian</creator><creator>Liang, Ruyu</creator><creator>Erel-Akbaba, Gulsah</creator><creator>Saad, Lorenzo</creator><creator>Obeid, Pierre J</creator><creator>Gao, Jun</creator><creator>Chiocca, E. Antonio</creator><creator>Weissleder, Ralph</creator><creator>Tannous, Bakhos A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7062-0684</orcidid><orcidid>https://orcid.org/0000-0001-7879-1445</orcidid></search><sort><creationdate>20220222</creationdate><title>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</title><author>Tian, Tian ; Liang, Ruyu ; Erel-Akbaba, Gulsah ; Saad, Lorenzo ; Obeid, Pierre J ; Gao, Jun ; Chiocca, E. Antonio ; Weissleder, Ralph ; Tannous, Bakhos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-d0cc22a5c2cf7fc81e8aa271d3815c9bcad89f1728192da07652d2c6789b1f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>B7-H1 Antigen</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - radiotherapy</topic><topic>Immune Checkpoint Inhibitors</topic><topic>Mice</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Liang, Ruyu</creatorcontrib><creatorcontrib>Erel-Akbaba, Gulsah</creatorcontrib><creatorcontrib>Saad, Lorenzo</creatorcontrib><creatorcontrib>Obeid, Pierre J</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chiocca, E. Antonio</creatorcontrib><creatorcontrib>Weissleder, Ralph</creatorcontrib><creatorcontrib>Tannous, Bakhos A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Tian</au><au>Liang, Ruyu</au><au>Erel-Akbaba, Gulsah</au><au>Saad, Lorenzo</au><au>Obeid, Pierre J</au><au>Gao, Jun</au><au>Chiocca, E. Antonio</au><au>Weissleder, Ralph</au><au>Tannous, Bakhos A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1940</spage><epage>1953</epage><pages>1940-1953</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35099172</pmid><doi>10.1021/acsnano.1c05505</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7062-0684</orcidid><orcidid>https://orcid.org/0000-0001-7879-1445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-02, Vol.16 (2), p.1940-1953
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9020451
source ACS Publications; MEDLINE
subjects Animals
B7-H1 Antigen
Brain Neoplasms - drug therapy
Brain Neoplasms - radiotherapy
Extracellular Vesicles - metabolism
Glioblastoma - drug therapy
Glioblastoma - radiotherapy
Immune Checkpoint Inhibitors
Mice
Tumor Microenvironment
title Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20Checkpoint%20Inhibition%20in%20GBM%20Primed%20with%20Radiation%20by%20Engineered%20Extracellular%20Vesicles&rft.jtitle=ACS%20nano&rft.au=Tian,%20Tian&rft.date=2022-02-22&rft.volume=16&rft.issue=2&rft.spage=1940&rft.epage=1953&rft.pages=1940-1953&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c05505&rft_dat=%3Cproquest_pubme%3E2624190245%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624190245&rft_id=info:pmid/35099172&rfr_iscdi=true