Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering

Three-dimensional (3D) printing technology has great potential for constructing structurally and functionally complex scaffold materials for tissue engineering. Bio-inks are a critical part of 3D printing for this purpose. In this study, based on dynamic hydrazone-crosslinked hyaluronic acid (HA-HYD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-04, Vol.7 (14), p.12076-12088
Hauptverfasser: Wang, Yunping, Chen, Yazhen, Zheng, Jianuo, Liu, Lingrong, Zhang, Qiqing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12088
container_issue 14
container_start_page 12076
container_title ACS omega
container_volume 7
creator Wang, Yunping
Chen, Yazhen
Zheng, Jianuo
Liu, Lingrong
Zhang, Qiqing
description Three-dimensional (3D) printing technology has great potential for constructing structurally and functionally complex scaffold materials for tissue engineering. Bio-inks are a critical part of 3D printing for this purpose. In this study, based on dynamic hydrazone-crosslinked hyaluronic acid (HA-HYD) and photocrosslinked gelatin methacrylate (GelMA), a double-network (DN) hydrogel with significantly enhanced mechanical strength, self-healing, and shear-thinning properties was developed as a printable hydrogel bio-ink for extrusion-based 3D printing. Owing to shear thinning, the DN hydrogel bio-inks could be extruded to form uniform filaments, which were printed layer by layer to fabricate the scaffolds. The self-healing performance of the filaments and photocrosslinking of GelMA worked together to obtain an integrated and stable printed structure with high mechanical strength. The in vitro cytocompatibility assay showed that the DN hydrogel printed scaffolds supported the survival and proliferation of bone marrow mesenchymal stem cells. GelMA/HA-HYD DN hydrogel bio-inks with printability, good structural integrity, and biocompatibility are promising materials for 3D printing of tissue engineering scaffolds.
doi_str_mv 10.1021/acsomega.2c00335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654280727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-2f7629f609033fbd893d3270d901c09f7778c34d6d237cdaa374f6542e70ab63</originalsourceid><addsrcrecordid>eNp1Uc9v2yAURtOmpep632nycYe5xeAY-zIpatKmUtVVWu6IwMOhxZCB3Sn_wf7s4iap2sNOPHjfD977EPpa4PMCk-JCyOg7aMU5kRhTOv2ATkjJcF7Qkn58U0_QWYwPGOOiqklNqs9oQqdl2TSkOkH_VpsAkM9NBy4a74TN7oNxvXFt9huszpcg7HiZ75zojLy43_jey-BjTM-PY-carEj4fLkTdgjeGZnNpFHZ3A9rC_kd9H99eMyWOxV8CzbTPmQrE-MA2cK1xgEkw_YL-qSFjXB2OE_R6mqxulzmt7-uby5nt7koKe1zollFGl3hJo2s16puqKKEYdXgQuJGM8ZqSUtVKUKZVEJQVupqWhJgWKwreop-7mW3w7oDJcH1QVi-DaYTYce9MPx9x5kNb_0Tb8b10ToJfD8IBP9ngNjzzkQJ1goHfoicjGY1ZoQlKN5DX9YVQL_aFJiPEfJjhPwQYaJ8e_u9V8IxsAT4sQckKn_wQ0iJxf_rPQMhUatY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654280727</pqid></control><display><type>article</type><title>Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Wang, Yunping ; Chen, Yazhen ; Zheng, Jianuo ; Liu, Lingrong ; Zhang, Qiqing</creator><creatorcontrib>Wang, Yunping ; Chen, Yazhen ; Zheng, Jianuo ; Liu, Lingrong ; Zhang, Qiqing</creatorcontrib><description>Three-dimensional (3D) printing technology has great potential for constructing structurally and functionally complex scaffold materials for tissue engineering. Bio-inks are a critical part of 3D printing for this purpose. In this study, based on dynamic hydrazone-crosslinked hyaluronic acid (HA-HYD) and photocrosslinked gelatin methacrylate (GelMA), a double-network (DN) hydrogel with significantly enhanced mechanical strength, self-healing, and shear-thinning properties was developed as a printable hydrogel bio-ink for extrusion-based 3D printing. Owing to shear thinning, the DN hydrogel bio-inks could be extruded to form uniform filaments, which were printed layer by layer to fabricate the scaffolds. The self-healing performance of the filaments and photocrosslinking of GelMA worked together to obtain an integrated and stable printed structure with high mechanical strength. The in vitro cytocompatibility assay showed that the DN hydrogel printed scaffolds supported the survival and proliferation of bone marrow mesenchymal stem cells. GelMA/HA-HYD DN hydrogel bio-inks with printability, good structural integrity, and biocompatibility are promising materials for 3D printing of tissue engineering scaffolds.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.2c00335</identifier><identifier>PMID: 35449926</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS omega, 2022-04, Vol.7 (14), p.12076-12088</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-2f7629f609033fbd893d3270d901c09f7778c34d6d237cdaa374f6542e70ab63</citedby><cites>FETCH-LOGICAL-a433t-2f7629f609033fbd893d3270d901c09f7778c34d6d237cdaa374f6542e70ab63</cites><orcidid>0000-0002-4463-2208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.2c00335$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.2c00335$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27061,27905,27906,53772,53774,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35449926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Chen, Yazhen</creatorcontrib><creatorcontrib>Zheng, Jianuo</creatorcontrib><creatorcontrib>Liu, Lingrong</creatorcontrib><creatorcontrib>Zhang, Qiqing</creatorcontrib><title>Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Three-dimensional (3D) printing technology has great potential for constructing structurally and functionally complex scaffold materials for tissue engineering. Bio-inks are a critical part of 3D printing for this purpose. In this study, based on dynamic hydrazone-crosslinked hyaluronic acid (HA-HYD) and photocrosslinked gelatin methacrylate (GelMA), a double-network (DN) hydrogel with significantly enhanced mechanical strength, self-healing, and shear-thinning properties was developed as a printable hydrogel bio-ink for extrusion-based 3D printing. Owing to shear thinning, the DN hydrogel bio-inks could be extruded to form uniform filaments, which were printed layer by layer to fabricate the scaffolds. The self-healing performance of the filaments and photocrosslinking of GelMA worked together to obtain an integrated and stable printed structure with high mechanical strength. The in vitro cytocompatibility assay showed that the DN hydrogel printed scaffolds supported the survival and proliferation of bone marrow mesenchymal stem cells. GelMA/HA-HYD DN hydrogel bio-inks with printability, good structural integrity, and biocompatibility are promising materials for 3D printing of tissue engineering scaffolds.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1Uc9v2yAURtOmpep632nycYe5xeAY-zIpatKmUtVVWu6IwMOhxZCB3Sn_wf7s4iap2sNOPHjfD977EPpa4PMCk-JCyOg7aMU5kRhTOv2ATkjJcF7Qkn58U0_QWYwPGOOiqklNqs9oQqdl2TSkOkH_VpsAkM9NBy4a74TN7oNxvXFt9huszpcg7HiZ75zojLy43_jey-BjTM-PY-carEj4fLkTdgjeGZnNpFHZ3A9rC_kd9H99eMyWOxV8CzbTPmQrE-MA2cK1xgEkw_YL-qSFjXB2OE_R6mqxulzmt7-uby5nt7koKe1zollFGl3hJo2s16puqKKEYdXgQuJGM8ZqSUtVKUKZVEJQVupqWhJgWKwreop-7mW3w7oDJcH1QVi-DaYTYce9MPx9x5kNb_0Tb8b10ToJfD8IBP9ngNjzzkQJ1goHfoicjGY1ZoQlKN5DX9YVQL_aFJiPEfJjhPwQYaJ8e_u9V8IxsAT4sQckKn_wQ0iJxf_rPQMhUatY</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Wang, Yunping</creator><creator>Chen, Yazhen</creator><creator>Zheng, Jianuo</creator><creator>Liu, Lingrong</creator><creator>Zhang, Qiqing</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4463-2208</orcidid></search><sort><creationdate>20220412</creationdate><title>Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering</title><author>Wang, Yunping ; Chen, Yazhen ; Zheng, Jianuo ; Liu, Lingrong ; Zhang, Qiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-2f7629f609033fbd893d3270d901c09f7778c34d6d237cdaa374f6542e70ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunping</creatorcontrib><creatorcontrib>Chen, Yazhen</creatorcontrib><creatorcontrib>Zheng, Jianuo</creatorcontrib><creatorcontrib>Liu, Lingrong</creatorcontrib><creatorcontrib>Zhang, Qiqing</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunping</au><au>Chen, Yazhen</au><au>Zheng, Jianuo</au><au>Liu, Lingrong</au><au>Zhang, Qiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>7</volume><issue>14</issue><spage>12076</spage><epage>12088</epage><pages>12076-12088</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Three-dimensional (3D) printing technology has great potential for constructing structurally and functionally complex scaffold materials for tissue engineering. Bio-inks are a critical part of 3D printing for this purpose. In this study, based on dynamic hydrazone-crosslinked hyaluronic acid (HA-HYD) and photocrosslinked gelatin methacrylate (GelMA), a double-network (DN) hydrogel with significantly enhanced mechanical strength, self-healing, and shear-thinning properties was developed as a printable hydrogel bio-ink for extrusion-based 3D printing. Owing to shear thinning, the DN hydrogel bio-inks could be extruded to form uniform filaments, which were printed layer by layer to fabricate the scaffolds. The self-healing performance of the filaments and photocrosslinking of GelMA worked together to obtain an integrated and stable printed structure with high mechanical strength. The in vitro cytocompatibility assay showed that the DN hydrogel printed scaffolds supported the survival and proliferation of bone marrow mesenchymal stem cells. GelMA/HA-HYD DN hydrogel bio-inks with printability, good structural integrity, and biocompatibility are promising materials for 3D printing of tissue engineering scaffolds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35449926</pmid><doi>10.1021/acsomega.2c00335</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4463-2208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2022-04, Vol.7 (14), p.12076-12088
issn 2470-1343
2470-1343
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016838
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Chemical Society (ACS) Open Access; PubMed Central
title Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Printing%20Self-Healing%20Dynamic/Photocrosslinking%20Gelatin-Hyaluronic%20Acid%20Double-Network%20Hydrogel%20for%20Tissue%20Engineering&rft.jtitle=ACS%20omega&rft.au=Wang,%20Yunping&rft.date=2022-04-12&rft.volume=7&rft.issue=14&rft.spage=12076&rft.epage=12088&rft.pages=12076-12088&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.2c00335&rft_dat=%3Cproquest_pubme%3E2654280727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654280727&rft_id=info:pmid/35449926&rfr_iscdi=true