Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults
To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort. We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes unti...
Gespeichert in:
Veröffentlicht in: | Diabetes care 2022-04, Vol.45 (4), p.811-818 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 818 |
---|---|
container_issue | 4 |
container_start_page | 811 |
container_title | Diabetes care |
container_volume | 45 |
creator | Ruuskanen, Matti O Erawijantari, Pande P Havulinna, Aki S Liu, Yang Méric, Guillaume Tuomilehto, Jaakko Inouye, Michael Jousilahti, Pekka Salomaa, Veikko Jain, Mohit Knight, Rob Lahti, Leo Niiranen, Teemu J |
description | To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort.
We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes until 31 December 2017. The samples were sequenced using shotgun metagenomics. We examined associations between gut microbiome composition and incident diabetes using multivariable-adjusted Cox regression models. We first used the eastern Finland subpopulation to obtain initial findings and validated these in the western Finland subpopulation.
Altogether, 432 cases of incident diabetes occurred over the median follow-up of 15.8 years. We detected four species and two clusters consistently associated with incident diabetes in the validation models. These four species were Clostridium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04-1.42), C. bolteae (HR 1.20; 95% CI 1.04-1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01-1.36), and Ruminococcus gnavus (HR 1.17; 95% CI 1.01-1.36). The positively associated clusters, cluster 1 (HR 1.18; 95% CI 1.02-1.38) and cluster 5 (HR 1.18; 95% CI 1.02-1.36), mostly consisted of these same species.
We observed robust species-level taxonomic features predictive of incident type 2 diabetes over long-term follow-up. These findings build on and extend previous mainly cross-sectional evidence and further support links between dietary habits, metabolic diseases, and type 2 diabetes that are modulated by the gut microbiome. The gut microbiome can potentially be used to improve disease prediction and uncover novel therapeutic targets for diabetes. |
doi_str_mv | 10.2337/dc21-2358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651848259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3de25be6ec149ebc072635e78b6118b82bf0b839b2e1a1aad60e8877daa45cf03</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EopfCgj-ALLEBqQE_E2eDVF1ouVIRXZS1ZTsTrqvEDrZTqf8eX_oQsJrFfOfozByEXlPygXHefRwcow3jUj1BG9pz2Ugp1FO0IVT0jex7doRe5HxNCBFCqefoiEtKCBfdBuXzteBv3qVofZwBb-O8xOyLjwHvMr5MMHhX_A3gOOJdcH6AUPDV7QKY4c_eWCiQsQ_Y4Mu4rJP5o9zGfUzlIJEnsmP4zIfg8x6fDutU8kv0bDRThlf38xj9OPtytf3aXHw_321PLxonCC8NH4BJCy24egZYRzrWcgmdsi2lyipmR2IV7y0DaqgxQ0tAqa4bjBHSjYQfo093vstqZxhcTZ7MpJfkZ5NudTRe_7sJfq9_xhvdE9p2nFWDd_cGKf5aIRc9--xgmkyAuGbNWibaljIiKvr2P_Q6rinU8yolqRKKyb5S7--o-u-cE4yPYSjRhyr1oUp9qLKyb_5O_0g-dMd_A1cEmSY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651848259</pqid></control><display><type>article</type><title>Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ruuskanen, Matti O ; Erawijantari, Pande P ; Havulinna, Aki S ; Liu, Yang ; Méric, Guillaume ; Tuomilehto, Jaakko ; Inouye, Michael ; Jousilahti, Pekka ; Salomaa, Veikko ; Jain, Mohit ; Knight, Rob ; Lahti, Leo ; Niiranen, Teemu J</creator><creatorcontrib>Ruuskanen, Matti O ; Erawijantari, Pande P ; Havulinna, Aki S ; Liu, Yang ; Méric, Guillaume ; Tuomilehto, Jaakko ; Inouye, Michael ; Jousilahti, Pekka ; Salomaa, Veikko ; Jain, Mohit ; Knight, Rob ; Lahti, Leo ; Niiranen, Teemu J</creatorcontrib><description>To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort.
We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes until 31 December 2017. The samples were sequenced using shotgun metagenomics. We examined associations between gut microbiome composition and incident diabetes using multivariable-adjusted Cox regression models. We first used the eastern Finland subpopulation to obtain initial findings and validated these in the western Finland subpopulation.
Altogether, 432 cases of incident diabetes occurred over the median follow-up of 15.8 years. We detected four species and two clusters consistently associated with incident diabetes in the validation models. These four species were Clostridium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04-1.42), C. bolteae (HR 1.20; 95% CI 1.04-1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01-1.36), and Ruminococcus gnavus (HR 1.17; 95% CI 1.01-1.36). The positively associated clusters, cluster 1 (HR 1.18; 95% CI 1.02-1.38) and cluster 5 (HR 1.18; 95% CI 1.02-1.36), mostly consisted of these same species.
We observed robust species-level taxonomic features predictive of incident type 2 diabetes over long-term follow-up. These findings build on and extend previous mainly cross-sectional evidence and further support links between dietary habits, metabolic diseases, and type 2 diabetes that are modulated by the gut microbiome. The gut microbiome can potentially be used to improve disease prediction and uncover novel therapeutic targets for diabetes.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/dc21-2358</identifier><identifier>PMID: 35100347</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adult ; Adults ; Clusters ; Cohort Studies ; Composition ; Cross-Sectional Studies ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - epidemiology ; Diet ; Digestive system ; Epidemiology ; Epidemiology/Health Services Research ; Feces ; Female ; Finland - epidemiology ; Gastrointestinal Microbiome - genetics ; Health risks ; Humans ; Intestinal microflora ; Male ; Metabolic disorders ; Microbiomes ; Microbiota ; Middle Aged ; Regression analysis ; Regression models ; Research design ; Species ; Therapeutic targets</subject><ispartof>Diabetes care, 2022-04, Vol.45 (4), p.811-818</ispartof><rights>2022 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Apr 2022</rights><rights>2022 by the American Diabetes Association 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3de25be6ec149ebc072635e78b6118b82bf0b839b2e1a1aad60e8877daa45cf03</citedby><cites>FETCH-LOGICAL-c403t-3de25be6ec149ebc072635e78b6118b82bf0b839b2e1a1aad60e8877daa45cf03</cites><orcidid>0000-0003-4221-2880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35100347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruuskanen, Matti O</creatorcontrib><creatorcontrib>Erawijantari, Pande P</creatorcontrib><creatorcontrib>Havulinna, Aki S</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Méric, Guillaume</creatorcontrib><creatorcontrib>Tuomilehto, Jaakko</creatorcontrib><creatorcontrib>Inouye, Michael</creatorcontrib><creatorcontrib>Jousilahti, Pekka</creatorcontrib><creatorcontrib>Salomaa, Veikko</creatorcontrib><creatorcontrib>Jain, Mohit</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lahti, Leo</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><title>Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort.
We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes until 31 December 2017. The samples were sequenced using shotgun metagenomics. We examined associations between gut microbiome composition and incident diabetes using multivariable-adjusted Cox regression models. We first used the eastern Finland subpopulation to obtain initial findings and validated these in the western Finland subpopulation.
Altogether, 432 cases of incident diabetes occurred over the median follow-up of 15.8 years. We detected four species and two clusters consistently associated with incident diabetes in the validation models. These four species were Clostridium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04-1.42), C. bolteae (HR 1.20; 95% CI 1.04-1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01-1.36), and Ruminococcus gnavus (HR 1.17; 95% CI 1.01-1.36). The positively associated clusters, cluster 1 (HR 1.18; 95% CI 1.02-1.38) and cluster 5 (HR 1.18; 95% CI 1.02-1.36), mostly consisted of these same species.
We observed robust species-level taxonomic features predictive of incident type 2 diabetes over long-term follow-up. These findings build on and extend previous mainly cross-sectional evidence and further support links between dietary habits, metabolic diseases, and type 2 diabetes that are modulated by the gut microbiome. The gut microbiome can potentially be used to improve disease prediction and uncover novel therapeutic targets for diabetes.</description><subject>Adult</subject><subject>Adults</subject><subject>Clusters</subject><subject>Cohort Studies</subject><subject>Composition</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diet</subject><subject>Digestive system</subject><subject>Epidemiology</subject><subject>Epidemiology/Health Services Research</subject><subject>Feces</subject><subject>Female</subject><subject>Finland - epidemiology</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Health risks</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Middle Aged</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research design</subject><subject>Species</subject><subject>Therapeutic targets</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1TAQhS0EopfCgj-ALLEBqQE_E2eDVF1ouVIRXZS1ZTsTrqvEDrZTqf8eX_oQsJrFfOfozByEXlPygXHefRwcow3jUj1BG9pz2Ugp1FO0IVT0jex7doRe5HxNCBFCqefoiEtKCBfdBuXzteBv3qVofZwBb-O8xOyLjwHvMr5MMHhX_A3gOOJdcH6AUPDV7QKY4c_eWCiQsQ_Y4Mu4rJP5o9zGfUzlIJEnsmP4zIfg8x6fDutU8kv0bDRThlf38xj9OPtytf3aXHw_321PLxonCC8NH4BJCy24egZYRzrWcgmdsi2lyipmR2IV7y0DaqgxQ0tAqa4bjBHSjYQfo093vstqZxhcTZ7MpJfkZ5NudTRe_7sJfq9_xhvdE9p2nFWDd_cGKf5aIRc9--xgmkyAuGbNWibaljIiKvr2P_Q6rinU8yolqRKKyb5S7--o-u-cE4yPYSjRhyr1oUp9qLKyb_5O_0g-dMd_A1cEmSY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ruuskanen, Matti O</creator><creator>Erawijantari, Pande P</creator><creator>Havulinna, Aki S</creator><creator>Liu, Yang</creator><creator>Méric, Guillaume</creator><creator>Tuomilehto, Jaakko</creator><creator>Inouye, Michael</creator><creator>Jousilahti, Pekka</creator><creator>Salomaa, Veikko</creator><creator>Jain, Mohit</creator><creator>Knight, Rob</creator><creator>Lahti, Leo</creator><creator>Niiranen, Teemu J</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4221-2880</orcidid></search><sort><creationdate>20220401</creationdate><title>Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults</title><author>Ruuskanen, Matti O ; Erawijantari, Pande P ; Havulinna, Aki S ; Liu, Yang ; Méric, Guillaume ; Tuomilehto, Jaakko ; Inouye, Michael ; Jousilahti, Pekka ; Salomaa, Veikko ; Jain, Mohit ; Knight, Rob ; Lahti, Leo ; Niiranen, Teemu J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3de25be6ec149ebc072635e78b6118b82bf0b839b2e1a1aad60e8877daa45cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Clusters</topic><topic>Cohort Studies</topic><topic>Composition</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diet</topic><topic>Digestive system</topic><topic>Epidemiology</topic><topic>Epidemiology/Health Services Research</topic><topic>Feces</topic><topic>Female</topic><topic>Finland - epidemiology</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Health risks</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Middle Aged</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research design</topic><topic>Species</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruuskanen, Matti O</creatorcontrib><creatorcontrib>Erawijantari, Pande P</creatorcontrib><creatorcontrib>Havulinna, Aki S</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Méric, Guillaume</creatorcontrib><creatorcontrib>Tuomilehto, Jaakko</creatorcontrib><creatorcontrib>Inouye, Michael</creatorcontrib><creatorcontrib>Jousilahti, Pekka</creatorcontrib><creatorcontrib>Salomaa, Veikko</creatorcontrib><creatorcontrib>Jain, Mohit</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lahti, Leo</creatorcontrib><creatorcontrib>Niiranen, Teemu J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruuskanen, Matti O</au><au>Erawijantari, Pande P</au><au>Havulinna, Aki S</au><au>Liu, Yang</au><au>Méric, Guillaume</au><au>Tuomilehto, Jaakko</au><au>Inouye, Michael</au><au>Jousilahti, Pekka</au><au>Salomaa, Veikko</au><au>Jain, Mohit</au><au>Knight, Rob</au><au>Lahti, Leo</au><au>Niiranen, Teemu J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>45</volume><issue>4</issue><spage>811</spage><epage>818</epage><pages>811-818</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>To examine the previously unknown long-term association between gut microbiome composition and incident type 2 diabetes in a representative population cohort.
We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1% women) in 2002 who were followed up for incident type 2 diabetes until 31 December 2017. The samples were sequenced using shotgun metagenomics. We examined associations between gut microbiome composition and incident diabetes using multivariable-adjusted Cox regression models. We first used the eastern Finland subpopulation to obtain initial findings and validated these in the western Finland subpopulation.
Altogether, 432 cases of incident diabetes occurred over the median follow-up of 15.8 years. We detected four species and two clusters consistently associated with incident diabetes in the validation models. These four species were Clostridium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04-1.42), C. bolteae (HR 1.20; 95% CI 1.04-1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01-1.36), and Ruminococcus gnavus (HR 1.17; 95% CI 1.01-1.36). The positively associated clusters, cluster 1 (HR 1.18; 95% CI 1.02-1.38) and cluster 5 (HR 1.18; 95% CI 1.02-1.36), mostly consisted of these same species.
We observed robust species-level taxonomic features predictive of incident type 2 diabetes over long-term follow-up. These findings build on and extend previous mainly cross-sectional evidence and further support links between dietary habits, metabolic diseases, and type 2 diabetes that are modulated by the gut microbiome. The gut microbiome can potentially be used to improve disease prediction and uncover novel therapeutic targets for diabetes.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>35100347</pmid><doi>10.2337/dc21-2358</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4221-2880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-5992 |
ispartof | Diabetes care, 2022-04, Vol.45 (4), p.811-818 |
issn | 0149-5992 1935-5548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016732 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Adult Adults Clusters Cohort Studies Composition Cross-Sectional Studies Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - epidemiology Diet Digestive system Epidemiology Epidemiology/Health Services Research Feces Female Finland - epidemiology Gastrointestinal Microbiome - genetics Health risks Humans Intestinal microflora Male Metabolic disorders Microbiomes Microbiota Middle Aged Regression analysis Regression models Research design Species Therapeutic targets |
title | Gut Microbiome Composition Is Predictive of Incident Type 2 Diabetes in a Population Cohort of 5,572 Finnish Adults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20Microbiome%20Composition%20Is%20Predictive%20of%20Incident%20Type%202%20Diabetes%20in%20a%20Population%20Cohort%20of%205,572%20Finnish%20Adults&rft.jtitle=Diabetes%20care&rft.au=Ruuskanen,%20Matti%20O&rft.date=2022-04-01&rft.volume=45&rft.issue=4&rft.spage=811&rft.epage=818&rft.pages=811-818&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/dc21-2358&rft_dat=%3Cproquest_pubme%3E2651848259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651848259&rft_id=info:pmid/35100347&rfr_iscdi=true |