DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
Abstract Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been severa...
Gespeichert in:
Veröffentlicht in: | Systematic biology 2022-04, Vol.71 (3), p.610-629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 629 |
---|---|
container_issue | 3 |
container_start_page | 610 |
container_title | Systematic biology |
container_volume | 71 |
creator | Willson, James Roddur, Mrinmoy Saha Liu, Baqiao Zaharias, Paul Warnow, Tandy |
description | Abstract
Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.] |
doi_str_mv | 10.1093/sysbio/syab070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/sysbio/syab070</oup_id><sourcerecordid>2566037197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-f2ca9c2bdc1a79486ba19d857a925816a7744ec90f41b45adfb9745e61ac38e93</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRbK1ePUqOekjdbfYj60GQ1mqh0kMreFs220ldSbIxmwj9701JLXryNAPzmzfDewhdEjwkWEa3fusT69qiEyzwEeoTLHgYR_zteNfzKGSEiR468_4DY0I4I6eoF1HKMGdxH80ns-V4cRcsSzAWfLCqAIJZkUIFhYGg8bbYBC9NVlvjym3wBAUEU53bbNuhEzAuL523tXXFOTpJdebhYl8H6HX6uBo_h_PF02z8MA8N5bIO05HR0oyStSFaSBrzRBO5jpnQcsRiwrUQlIKROKUkoUyv00QKyoATbaIYZDRA951u2SQ5rA0UdaUzVVY219VWOW3V30lh39XGfSmJWwMEbgWu9wKV-2zA1yq33kCW6QJc49WIcY4jQaRo0WGHmsp5X0F6OEOw2kWgugjUPoJ24er3cwf8x_MWuOkA15T_iX0D-vGULg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566037197</pqid></control><display><type>article</type><title>DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Willson, James ; Roddur, Mrinmoy Saha ; Liu, Baqiao ; Zaharias, Paul ; Warnow, Tandy</creator><contributor>Hahn, Matthew</contributor><creatorcontrib>Willson, James ; Roddur, Mrinmoy Saha ; Liu, Baqiao ; Zaharias, Paul ; Warnow, Tandy ; Hahn, Matthew</creatorcontrib><description>Abstract
Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]</description><identifier>ISSN: 1063-5157</identifier><identifier>ISSN: 1076-836X</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syab070</identifier><identifier>PMID: 34450658</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology ; Gene Duplication ; Models, Genetic ; Pedigree ; Phylogeny ; Regular</subject><ispartof>Systematic biology, 2022-04, Vol.71 (3), p.610-629</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-f2ca9c2bdc1a79486ba19d857a925816a7744ec90f41b45adfb9745e61ac38e93</citedby><cites>FETCH-LOGICAL-c469t-f2ca9c2bdc1a79486ba19d857a925816a7744ec90f41b45adfb9745e61ac38e93</cites><orcidid>0000-0002-9979-2524 ; 0000-0001-7717-3514 ; 0000-0003-3550-2636 ; 0000-0002-8496-3597 ; 0000-0002-4210-8269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34450658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hahn, Matthew</contributor><creatorcontrib>Willson, James</creatorcontrib><creatorcontrib>Roddur, Mrinmoy Saha</creatorcontrib><creatorcontrib>Liu, Baqiao</creatorcontrib><creatorcontrib>Zaharias, Paul</creatorcontrib><creatorcontrib>Warnow, Tandy</creatorcontrib><title>DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>Abstract
Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Gene Duplication</subject><subject>Models, Genetic</subject><subject>Pedigree</subject><subject>Phylogeny</subject><subject>Regular</subject><issn>1063-5157</issn><issn>1076-836X</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1Lw0AQxRdRbK1ePUqOekjdbfYj60GQ1mqh0kMreFs220ldSbIxmwj9701JLXryNAPzmzfDewhdEjwkWEa3fusT69qiEyzwEeoTLHgYR_zteNfzKGSEiR468_4DY0I4I6eoF1HKMGdxH80ns-V4cRcsSzAWfLCqAIJZkUIFhYGg8bbYBC9NVlvjym3wBAUEU53bbNuhEzAuL523tXXFOTpJdebhYl8H6HX6uBo_h_PF02z8MA8N5bIO05HR0oyStSFaSBrzRBO5jpnQcsRiwrUQlIKROKUkoUyv00QKyoATbaIYZDRA951u2SQ5rA0UdaUzVVY219VWOW3V30lh39XGfSmJWwMEbgWu9wKV-2zA1yq33kCW6QJc49WIcY4jQaRo0WGHmsp5X0F6OEOw2kWgugjUPoJ24er3cwf8x_MWuOkA15T_iX0D-vGULg</recordid><startdate>20220419</startdate><enddate>20220419</enddate><creator>Willson, James</creator><creator>Roddur, Mrinmoy Saha</creator><creator>Liu, Baqiao</creator><creator>Zaharias, Paul</creator><creator>Warnow, Tandy</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9979-2524</orcidid><orcidid>https://orcid.org/0000-0001-7717-3514</orcidid><orcidid>https://orcid.org/0000-0003-3550-2636</orcidid><orcidid>https://orcid.org/0000-0002-8496-3597</orcidid><orcidid>https://orcid.org/0000-0002-4210-8269</orcidid></search><sort><creationdate>20220419</creationdate><title>DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition</title><author>Willson, James ; Roddur, Mrinmoy Saha ; Liu, Baqiao ; Zaharias, Paul ; Warnow, Tandy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-f2ca9c2bdc1a79486ba19d857a925816a7744ec90f41b45adfb9745e61ac38e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Gene Duplication</topic><topic>Models, Genetic</topic><topic>Pedigree</topic><topic>Phylogeny</topic><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willson, James</creatorcontrib><creatorcontrib>Roddur, Mrinmoy Saha</creatorcontrib><creatorcontrib>Liu, Baqiao</creatorcontrib><creatorcontrib>Zaharias, Paul</creatorcontrib><creatorcontrib>Warnow, Tandy</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willson, James</au><au>Roddur, Mrinmoy Saha</au><au>Liu, Baqiao</au><au>Zaharias, Paul</au><au>Warnow, Tandy</au><au>Hahn, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2022-04-19</date><risdate>2022</risdate><volume>71</volume><issue>3</issue><spage>610</spage><epage>629</epage><pages>610-629</pages><issn>1063-5157</issn><issn>1076-836X</issn><eissn>1076-836X</eissn><abstract>Abstract
Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34450658</pmid><doi>10.1093/sysbio/syab070</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9979-2524</orcidid><orcidid>https://orcid.org/0000-0001-7717-3514</orcidid><orcidid>https://orcid.org/0000-0003-3550-2636</orcidid><orcidid>https://orcid.org/0000-0002-8496-3597</orcidid><orcidid>https://orcid.org/0000-0002-4210-8269</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-5157 |
ispartof | Systematic biology, 2022-04, Vol.71 (3), p.610-629 |
issn | 1063-5157 1076-836X 1076-836X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9016570 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Algorithms Computational Biology Gene Duplication Models, Genetic Pedigree Phylogeny Regular |
title | DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DISCO:%20Species%20Tree%20Inference%20using%20Multicopy%20Gene%20Family%20Tree%20Decomposition&rft.jtitle=Systematic%20biology&rft.au=Willson,%20James&rft.date=2022-04-19&rft.volume=71&rft.issue=3&rft.spage=610&rft.epage=629&rft.pages=610-629&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syab070&rft_dat=%3Cproquest_pubme%3E2566037197%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566037197&rft_id=info:pmid/34450658&rft_oup_id=10.1093/sysbio/syab070&rfr_iscdi=true |