Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor
Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer...
Gespeichert in:
Veröffentlicht in: | Science advances 2022-04, Vol.8 (15), p.eabi8481 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | eabi8481 |
container_title | Science advances |
container_volume | 8 |
creator | Tan, Cheng Ho, Derek Y H Wang, Lei Li, Jia I A Yudhistira, Indra Rhodes, Daniel A Taniguchi, Takashi Watanabe, Kenji Shepard, Kenneth McEuen, Paul L Dean, Cory R Adam, Shaffique Hone, James |
description | Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a link between semiconductor physics and the emerging field of viscous electronics. |
doi_str_mv | 10.1126/sciadv.abi8481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651689718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4c825da6713a9d9a45800892ba09d2b29f01b334f0b49c1c7882cf352e03cd73</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EohX0yhHlyCXFSxb7goTKKlWCQ-_WxHZao8QucVIp_56UlKqcZqT55s3oPYRuCJ4TQrP7oCzo3RwKyxNOztCUsjyNaZrw85N-gmYhfGGMSZJlKRGXaMLShOYky6fo88mGYLfQWu9i46CojI42vW687h3UVkXKO92p1u5s20fWRRC13S8XFeD0GrZRMAM3Ur65RhclVMHMDvUKrV6eV4u3ePnx-r54XMaKCdzGieI01ZDlhIHQApKUY8wFLQALTQsqSkwKxpISF4lQROWcU1WylBrMlM7ZFXoYZbddURutjGsbqOS2sTU0vfRg5f-Jsxu59jspMKHDsUHg7iDQ-O_OhFbWNihTVeCM74Kkg1UZFznZo_MRVY0PoTHl8QzBch-EHIOQhyCGhdvT5474n-3sB_pniCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651689718</pqid></control><display><type>article</type><title>Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tan, Cheng ; Ho, Derek Y H ; Wang, Lei ; Li, Jia I A ; Yudhistira, Indra ; Rhodes, Daniel A ; Taniguchi, Takashi ; Watanabe, Kenji ; Shepard, Kenneth ; McEuen, Paul L ; Dean, Cory R ; Adam, Shaffique ; Hone, James</creator><creatorcontrib>Tan, Cheng ; Ho, Derek Y H ; Wang, Lei ; Li, Jia I A ; Yudhistira, Indra ; Rhodes, Daniel A ; Taniguchi, Takashi ; Watanabe, Kenji ; Shepard, Kenneth ; McEuen, Paul L ; Dean, Cory R ; Adam, Shaffique ; Hone, James</creatorcontrib><description>Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a link between semiconductor physics and the emerging field of viscous electronics.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abi8481</identifier><identifier>PMID: 35427167</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Condensed Matter Physics ; Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-04, Vol.8 (15), p.eabi8481</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4c825da6713a9d9a45800892ba09d2b29f01b334f0b49c1c7882cf352e03cd73</citedby><cites>FETCH-LOGICAL-c390t-4c825da6713a9d9a45800892ba09d2b29f01b334f0b49c1c7882cf352e03cd73</cites><orcidid>0000-0003-0665-6775 ; 0000-0002-6692-8288 ; 0000-0002-8084-3301 ; 0000-0002-8431-2567 ; 0000-0002-3095-9920 ; 0000-0003-2967-5960 ; 0000-0003-3701-8119 ; 0000-0002-6438-5750 ; 0000-0003-1256-9918 ; 0000-0002-1919-9107 ; 0000-0001-7306-2905 ; 0000-0002-1467-3105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012458/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012458/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35427167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Ho, Derek Y H</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Jia I A</creatorcontrib><creatorcontrib>Yudhistira, Indra</creatorcontrib><creatorcontrib>Rhodes, Daniel A</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Shepard, Kenneth</creatorcontrib><creatorcontrib>McEuen, Paul L</creatorcontrib><creatorcontrib>Dean, Cory R</creatorcontrib><creatorcontrib>Adam, Shaffique</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><title>Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a link between semiconductor physics and the emerging field of viscous electronics.</description><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkUlPwzAQhS0EohX0yhHlyCXFSxb7goTKKlWCQ-_WxHZao8QucVIp_56UlKqcZqT55s3oPYRuCJ4TQrP7oCzo3RwKyxNOztCUsjyNaZrw85N-gmYhfGGMSZJlKRGXaMLShOYky6fo88mGYLfQWu9i46CojI42vW687h3UVkXKO92p1u5s20fWRRC13S8XFeD0GrZRMAM3Ur65RhclVMHMDvUKrV6eV4u3ePnx-r54XMaKCdzGieI01ZDlhIHQApKUY8wFLQALTQsqSkwKxpISF4lQROWcU1WylBrMlM7ZFXoYZbddURutjGsbqOS2sTU0vfRg5f-Jsxu59jspMKHDsUHg7iDQ-O_OhFbWNihTVeCM74Kkg1UZFznZo_MRVY0PoTHl8QzBch-EHIOQhyCGhdvT5474n-3sB_pniCs</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Tan, Cheng</creator><creator>Ho, Derek Y H</creator><creator>Wang, Lei</creator><creator>Li, Jia I A</creator><creator>Yudhistira, Indra</creator><creator>Rhodes, Daniel A</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Shepard, Kenneth</creator><creator>McEuen, Paul L</creator><creator>Dean, Cory R</creator><creator>Adam, Shaffique</creator><creator>Hone, James</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0002-6692-8288</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/0000-0002-8431-2567</orcidid><orcidid>https://orcid.org/0000-0002-3095-9920</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-6438-5750</orcidid><orcidid>https://orcid.org/0000-0003-1256-9918</orcidid><orcidid>https://orcid.org/0000-0002-1919-9107</orcidid><orcidid>https://orcid.org/0000-0001-7306-2905</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></search><sort><creationdate>20220415</creationdate><title>Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor</title><author>Tan, Cheng ; Ho, Derek Y H ; Wang, Lei ; Li, Jia I A ; Yudhistira, Indra ; Rhodes, Daniel A ; Taniguchi, Takashi ; Watanabe, Kenji ; Shepard, Kenneth ; McEuen, Paul L ; Dean, Cory R ; Adam, Shaffique ; Hone, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4c825da6713a9d9a45800892ba09d2b29f01b334f0b49c1c7882cf352e03cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Ho, Derek Y H</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Jia I A</creatorcontrib><creatorcontrib>Yudhistira, Indra</creatorcontrib><creatorcontrib>Rhodes, Daniel A</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Shepard, Kenneth</creatorcontrib><creatorcontrib>McEuen, Paul L</creatorcontrib><creatorcontrib>Dean, Cory R</creatorcontrib><creatorcontrib>Adam, Shaffique</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Cheng</au><au>Ho, Derek Y H</au><au>Wang, Lei</au><au>Li, Jia I A</au><au>Yudhistira, Indra</au><au>Rhodes, Daniel A</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Shepard, Kenneth</au><au>McEuen, Paul L</au><au>Dean, Cory R</au><au>Adam, Shaffique</au><au>Hone, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>8</volume><issue>15</issue><spage>eabi8481</spage><pages>eabi8481-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a link between semiconductor physics and the emerging field of viscous electronics.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35427167</pmid><doi>10.1126/sciadv.abi8481</doi><orcidid>https://orcid.org/0000-0003-0665-6775</orcidid><orcidid>https://orcid.org/0000-0002-6692-8288</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/0000-0002-8431-2567</orcidid><orcidid>https://orcid.org/0000-0002-3095-9920</orcidid><orcidid>https://orcid.org/0000-0003-2967-5960</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-6438-5750</orcidid><orcidid>https://orcid.org/0000-0003-1256-9918</orcidid><orcidid>https://orcid.org/0000-0002-1919-9107</orcidid><orcidid>https://orcid.org/0000-0001-7306-2905</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-04, Vol.8 (15), p.eabi8481 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012458 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Condensed Matter Physics Materials Science Physical and Materials Sciences SciAdv r-articles |
title | Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation-enabled%20hydrodynamic%20conductivity%20in%20a%20tunable%20bandgap%20semiconductor&rft.jtitle=Science%20advances&rft.au=Tan,%20Cheng&rft.date=2022-04-15&rft.volume=8&rft.issue=15&rft.spage=eabi8481&rft.pages=eabi8481-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abi8481&rft_dat=%3Cproquest_pubme%3E2651689718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651689718&rft_id=info:pmid/35427167&rfr_iscdi=true |