Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy
Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. Thi...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2022, Vol.2022 (1), p.9165443-9165443 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9165443 |
---|---|
container_issue | 1 |
container_start_page | 9165443 |
container_title | BioMed research international |
container_volume | 2022 |
creator | Campos, Estefânia V. R. Proença, Patrícia L. F. da Costa, Tais G. de Lima, Renata Fraceto, Leonardo F. de Araujo, Daniele R. |
description | Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380±4 nm, positive zeta potential after coating with chitosan (23.3±1.7 mV), and high encapsulation efficiency (96.7±0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy. |
doi_str_mv | 10.1155/2022/9165443 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A700760062</galeid><sourcerecordid>A700760062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6597932f74a87cef8578271f400a32996036434c0d99c40438b6cae5a3813ccb3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpjTOyxAUJ0vorTnxBqrZAK60Aqe3Z8jqTxCWxFztplXP_eL3aZSk94IstzeN35p2ZLHtL8AkhRXFKMaWnkoiCc_YiO6SM8FwQTl7u34wdZMcx3uJ0KiKwFK-zA1ZwxgmrDrOHm2hdixadHX3ULl94PUKNfvp-HiBYg75r59c6jNb0EPPrDsLgI7hoR3sH6GKug2-hj8g6pGP0xurReofu7dihpR28Awcpgq5-JeI8TC06hz59DTO6GkNK1s5vsleN7iMc7-6j7Obrl-vFRb788e1ycbbMDS_FmItClpLRpuS6Kg00VVFWtCQNx1gzKqXATCRbBtdSGo45q1bCaCg0qwgzZsWOss9b3fW0GqA24FIBvVoHO-gwK6-t-jfibKdaf6ckJqnPOAl82AkE_3uCOKrBRgN9rx34KSoqijQQKQuR0PfP0Fs_BZfsbag0IVrS6i_V6h6UdY1Pec1GVJ2VGJcCY0ET9WlLmeBjDNDsSyZYbdZAbdZA7dYg4e-e2tzDf4aegI9boLOu1vf2_3KPEai6FQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651412728</pqid></control><display><type>article</type><title>Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Campos, Estefânia V. R. ; Proença, Patrícia L. F. ; da Costa, Tais G. ; de Lima, Renata ; Fraceto, Leonardo F. ; de Araujo, Daniele R.</creator><contributor>Lehto, Vesa-Pekka ; Vesa-Pekka Lehto</contributor><creatorcontrib>Campos, Estefânia V. R. ; Proença, Patrícia L. F. ; da Costa, Tais G. ; de Lima, Renata ; Fraceto, Leonardo F. ; de Araujo, Daniele R. ; Lehto, Vesa-Pekka ; Vesa-Pekka Lehto</creatorcontrib><description>Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380±4 nm, positive zeta potential after coating with chitosan (23.3±1.7 mV), and high encapsulation efficiency (96.7±0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2022/9165443</identifier><identifier>PMID: 35434138</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Anesthesia ; Anesthetics ; Anesthetics, Local ; Benzocaine ; Cell viability ; Chitin ; Chitosan ; Coatings ; Colloids ; Controlled release ; Dermatologic agents ; Dermatology ; Dosage and administration ; Drug Carriers ; Drug delivery ; Drug Delivery Systems ; Drug Liberation ; Drugs ; Efficiency ; Fibroblasts ; Formulae, receipts, prescriptions ; Hybrids ; Hydrogels ; Keratinocytes ; Limonene ; Local anesthetics ; Morphology ; Nanoparticles ; Pain ; Particle Size ; Penetration ; Permeability ; Pharmaceutical research ; Poloxamers ; Polylactide-co-glycolide ; Polymers ; Production processes ; Pseudoplasticity ; Scanning electron microscopy ; Skin ; Sustained release ; Toxicity ; Vehicles ; Viscosity ; Zeta potential</subject><ispartof>BioMed research international, 2022, Vol.2022 (1), p.9165443-9165443</ispartof><rights>Copyright © 2022 Estefânia V. R. Campos et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Estefânia V. R. Campos et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Estefânia V. R. Campos et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6597932f74a87cef8578271f400a32996036434c0d99c40438b6cae5a3813ccb3</citedby><cites>FETCH-LOGICAL-c476t-6597932f74a87cef8578271f400a32996036434c0d99c40438b6cae5a3813ccb3</cites><orcidid>0000-0001-8712-1144 ; 0000-0002-2827-2038 ; 0000-0002-5341-5731 ; 0000-0002-9420-7461 ; 0000-0002-6800-9787 ; 0000-0002-9289-4229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35434138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lehto, Vesa-Pekka</contributor><contributor>Vesa-Pekka Lehto</contributor><creatorcontrib>Campos, Estefânia V. R.</creatorcontrib><creatorcontrib>Proença, Patrícia L. F.</creatorcontrib><creatorcontrib>da Costa, Tais G.</creatorcontrib><creatorcontrib>de Lima, Renata</creatorcontrib><creatorcontrib>Fraceto, Leonardo F.</creatorcontrib><creatorcontrib>de Araujo, Daniele R.</creatorcontrib><title>Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380±4 nm, positive zeta potential after coating with chitosan (23.3±1.7 mV), and high encapsulation efficiency (96.7±0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.</description><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Anesthetics, Local</subject><subject>Benzocaine</subject><subject>Cell viability</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Coatings</subject><subject>Colloids</subject><subject>Controlled release</subject><subject>Dermatologic agents</subject><subject>Dermatology</subject><subject>Dosage and administration</subject><subject>Drug Carriers</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Drugs</subject><subject>Efficiency</subject><subject>Fibroblasts</subject><subject>Formulae, receipts, prescriptions</subject><subject>Hybrids</subject><subject>Hydrogels</subject><subject>Keratinocytes</subject><subject>Limonene</subject><subject>Local anesthetics</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Pain</subject><subject>Particle Size</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Pharmaceutical research</subject><subject>Poloxamers</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Pseudoplasticity</subject><subject>Scanning electron microscopy</subject><subject>Skin</subject><subject>Sustained release</subject><subject>Toxicity</subject><subject>Vehicles</subject><subject>Viscosity</subject><subject>Zeta potential</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk1v1DAQhiMEolXpjTOyxAUJ0vorTnxBqrZAK60Aqe3Z8jqTxCWxFztplXP_eL3aZSk94IstzeN35p2ZLHtL8AkhRXFKMaWnkoiCc_YiO6SM8FwQTl7u34wdZMcx3uJ0KiKwFK-zA1ZwxgmrDrOHm2hdixadHX3ULl94PUKNfvp-HiBYg75r59c6jNb0EPPrDsLgI7hoR3sH6GKug2-hj8g6pGP0xurReofu7dihpR28Awcpgq5-JeI8TC06hz59DTO6GkNK1s5vsleN7iMc7-6j7Obrl-vFRb788e1ycbbMDS_FmItClpLRpuS6Kg00VVFWtCQNx1gzKqXATCRbBtdSGo45q1bCaCg0qwgzZsWOss9b3fW0GqA24FIBvVoHO-gwK6-t-jfibKdaf6ckJqnPOAl82AkE_3uCOKrBRgN9rx34KSoqijQQKQuR0PfP0Fs_BZfsbag0IVrS6i_V6h6UdY1Pec1GVJ2VGJcCY0ET9WlLmeBjDNDsSyZYbdZAbdZA7dYg4e-e2tzDf4aegI9boLOu1vf2_3KPEai6FQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Campos, Estefânia V. R.</creator><creator>Proença, Patrícia L. F.</creator><creator>da Costa, Tais G.</creator><creator>de Lima, Renata</creator><creator>Fraceto, Leonardo F.</creator><creator>de Araujo, Daniele R.</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8712-1144</orcidid><orcidid>https://orcid.org/0000-0002-2827-2038</orcidid><orcidid>https://orcid.org/0000-0002-5341-5731</orcidid><orcidid>https://orcid.org/0000-0002-9420-7461</orcidid><orcidid>https://orcid.org/0000-0002-6800-9787</orcidid><orcidid>https://orcid.org/0000-0002-9289-4229</orcidid></search><sort><creationdate>2022</creationdate><title>Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy</title><author>Campos, Estefânia V. R. ; Proença, Patrícia L. F. ; da Costa, Tais G. ; de Lima, Renata ; Fraceto, Leonardo F. ; de Araujo, Daniele R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6597932f74a87cef8578271f400a32996036434c0d99c40438b6cae5a3813ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Anesthetics, Local</topic><topic>Benzocaine</topic><topic>Cell viability</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Coatings</topic><topic>Colloids</topic><topic>Controlled release</topic><topic>Dermatologic agents</topic><topic>Dermatology</topic><topic>Dosage and administration</topic><topic>Drug Carriers</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Drugs</topic><topic>Efficiency</topic><topic>Fibroblasts</topic><topic>Formulae, receipts, prescriptions</topic><topic>Hybrids</topic><topic>Hydrogels</topic><topic>Keratinocytes</topic><topic>Limonene</topic><topic>Local anesthetics</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Pain</topic><topic>Particle Size</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Pharmaceutical research</topic><topic>Poloxamers</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Pseudoplasticity</topic><topic>Scanning electron microscopy</topic><topic>Skin</topic><topic>Sustained release</topic><topic>Toxicity</topic><topic>Vehicles</topic><topic>Viscosity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, Estefânia V. R.</creatorcontrib><creatorcontrib>Proença, Patrícia L. F.</creatorcontrib><creatorcontrib>da Costa, Tais G.</creatorcontrib><creatorcontrib>de Lima, Renata</creatorcontrib><creatorcontrib>Fraceto, Leonardo F.</creatorcontrib><creatorcontrib>de Araujo, Daniele R.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, Estefânia V. R.</au><au>Proença, Patrícia L. F.</au><au>da Costa, Tais G.</au><au>de Lima, Renata</au><au>Fraceto, Leonardo F.</au><au>de Araujo, Daniele R.</au><au>Lehto, Vesa-Pekka</au><au>Vesa-Pekka Lehto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>9165443</spage><epage>9165443</epage><pages>9165443-9165443</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380±4 nm, positive zeta potential after coating with chitosan (23.3±1.7 mV), and high encapsulation efficiency (96.7±0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35434138</pmid><doi>10.1155/2022/9165443</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8712-1144</orcidid><orcidid>https://orcid.org/0000-0002-2827-2038</orcidid><orcidid>https://orcid.org/0000-0002-5341-5731</orcidid><orcidid>https://orcid.org/0000-0002-9420-7461</orcidid><orcidid>https://orcid.org/0000-0002-6800-9787</orcidid><orcidid>https://orcid.org/0000-0002-9289-4229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2022, Vol.2022 (1), p.9165443-9165443 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010220 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Anesthesia Anesthetics Anesthetics, Local Benzocaine Cell viability Chitin Chitosan Coatings Colloids Controlled release Dermatologic agents Dermatology Dosage and administration Drug Carriers Drug delivery Drug Delivery Systems Drug Liberation Drugs Efficiency Fibroblasts Formulae, receipts, prescriptions Hybrids Hydrogels Keratinocytes Limonene Local anesthetics Morphology Nanoparticles Pain Particle Size Penetration Permeability Pharmaceutical research Poloxamers Polylactide-co-glycolide Polymers Production processes Pseudoplasticity Scanning electron microscopy Skin Sustained release Toxicity Vehicles Viscosity Zeta potential |
title | Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Chitosan-Coated%20Polymeric%20Nanoparticles-Thermosensitive%20Hydrogels%20in%20association%20with%20Limonene%20as%20Skin%20Drug%20Delivery%20Strategy&rft.jtitle=BioMed%20research%20international&rft.au=Campos,%20Estef%C3%A2nia%20V.%20R.&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=9165443&rft.epage=9165443&rft.pages=9165443-9165443&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2022/9165443&rft_dat=%3Cgale_pubme%3EA700760062%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651412728&rft_id=info:pmid/35434138&rft_galeid=A700760062&rfr_iscdi=true |