Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint

Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2022-04, Vol.41 (9), p.1644-1657
Hauptverfasser: Kawaguchi, Eric S., Li, Gang, Lewinger, Juan Pablo, Gauderman, W. James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1657
container_issue 9
container_start_page 1644
container_title Statistics in medicine
container_volume 41
creator Kawaguchi, Eric S.
Li, Gang
Lewinger, Juan Pablo
Gauderman, W. James
description Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.
doi_str_mv 10.1002/sim.9319
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648890630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</originalsourceid><addsrcrecordid>eNp1kc1uEzEURi0EoqEg8QTIEptupvhnPLY3lVDV0kpFLChry_HcJK4y9mA7SbPrI_QZ-yR1SKnKgpVl3ePPR_dD6CMlx5QQ9iX74Vhzql-hCSVaNoQJ9RpNCJOy6SQVB-hdzjeEUCqYfIsOuCBSdK2eoNvrTXy4u88FRrzYjrEsIPuMC-TiwxyXiHso4AqeQ4AKQlj7FMMAoWAfCiTrio8h1wu2OygOO2zje8DZ2YA3vizqJK_S2q_tEkPox1hfvkdvZnaZ4cPTeYh-nZ9dn140Vz--XZ5-vWpcy5VuKGdkJrRmtsorKnuie9FOq7vibCaBKJg6KZSkzInO6dZx21canHCK65YfopN97riaDtC7Kp7s0ozJDzZtTbTe_DsJfmHmcW00IVJpVgM-PwWk-HtV92Ju4iqF6mxY1yqlScdJpY72lEsx5wSz5x8oMbuOTO3I7Dqq6KeXRs_g31Iq0OyBjV_C9r9B5ufl9z-Bj_NFoI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648890630</pqid></control><display><type>article</type><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</creator><creatorcontrib>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</creatorcontrib><description>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9319</identifier><identifier>PMID: 35075649</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Breast cancer ; censoring ; Computer Simulation ; Cox proportional hazards model ; Gene expression ; Gene-Environment Interaction ; Genome-Wide Association Study - methods ; Genomes ; Humans ; Hypotheses ; Hypothesis testing ; Models, Genetic ; personalized medicine ; Polymorphism, Single Nucleotide ; survival analysis</subject><ispartof>Statistics in medicine, 2022-04, Vol.41 (9), p.1644-1657</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</citedby><cites>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</cites><orcidid>0000-0003-2014-5023 ; 0000-0002-4753-9420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35075649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawaguchi, Eric S.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Lewinger, Juan Pablo</creatorcontrib><creatorcontrib>Gauderman, W. James</creatorcontrib><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</description><subject>Breast cancer</subject><subject>censoring</subject><subject>Computer Simulation</subject><subject>Cox proportional hazards model</subject><subject>Gene expression</subject><subject>Gene-Environment Interaction</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Models, Genetic</subject><subject>personalized medicine</subject><subject>Polymorphism, Single Nucleotide</subject><subject>survival analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEURi0EoqEg8QTIEptupvhnPLY3lVDV0kpFLChry_HcJK4y9mA7SbPrI_QZ-yR1SKnKgpVl3ePPR_dD6CMlx5QQ9iX74Vhzql-hCSVaNoQJ9RpNCJOy6SQVB-hdzjeEUCqYfIsOuCBSdK2eoNvrTXy4u88FRrzYjrEsIPuMC-TiwxyXiHso4AqeQ4AKQlj7FMMAoWAfCiTrio8h1wu2OygOO2zje8DZ2YA3vizqJK_S2q_tEkPox1hfvkdvZnaZ4cPTeYh-nZ9dn140Vz--XZ5-vWpcy5VuKGdkJrRmtsorKnuie9FOq7vibCaBKJg6KZSkzInO6dZx21canHCK65YfopN97riaDtC7Kp7s0ozJDzZtTbTe_DsJfmHmcW00IVJpVgM-PwWk-HtV92Ju4iqF6mxY1yqlScdJpY72lEsx5wSz5x8oMbuOTO3I7Dqq6KeXRs_g31Iq0OyBjV_C9r9B5ufl9z-Bj_NFoI8</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Kawaguchi, Eric S.</creator><creator>Li, Gang</creator><creator>Lewinger, Juan Pablo</creator><creator>Gauderman, W. James</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2014-5023</orcidid><orcidid>https://orcid.org/0000-0002-4753-9420</orcidid></search><sort><creationdate>20220430</creationdate><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><author>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>censoring</topic><topic>Computer Simulation</topic><topic>Cox proportional hazards model</topic><topic>Gene expression</topic><topic>Gene-Environment Interaction</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Models, Genetic</topic><topic>personalized medicine</topic><topic>Polymorphism, Single Nucleotide</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Eric S.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Lewinger, Juan Pablo</creatorcontrib><creatorcontrib>Gauderman, W. James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Eric S.</au><au>Li, Gang</au><au>Lewinger, Juan Pablo</au><au>Gauderman, W. James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-04-30</date><risdate>2022</risdate><volume>41</volume><issue>9</issue><spage>1644</spage><epage>1657</epage><pages>1644-1657</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35075649</pmid><doi>10.1002/sim.9319</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2014-5023</orcidid><orcidid>https://orcid.org/0000-0002-4753-9420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2022-04, Vol.41 (9), p.1644-1657
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007892
source MEDLINE; Wiley Online Library All Journals
subjects Breast cancer
censoring
Computer Simulation
Cox proportional hazards model
Gene expression
Gene-Environment Interaction
Genome-Wide Association Study - methods
Genomes
Humans
Hypotheses
Hypothesis testing
Models, Genetic
personalized medicine
Polymorphism, Single Nucleotide
survival analysis
title Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90step%20hypothesis%20testing%20to%20detect%20gene%E2%80%90environment%20interactions%20in%20a%20genome%E2%80%90wide%20scan%20with%20a%20survival%20endpoint&rft.jtitle=Statistics%20in%20medicine&rft.au=Kawaguchi,%20Eric%20S.&rft.date=2022-04-30&rft.volume=41&rft.issue=9&rft.spage=1644&rft.epage=1657&rft.pages=1644-1657&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9319&rft_dat=%3Cproquest_pubme%3E2648890630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648890630&rft_id=info:pmid/35075649&rfr_iscdi=true