Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint
Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2022-04, Vol.41 (9), p.1644-1657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1657 |
---|---|
container_issue | 9 |
container_start_page | 1644 |
container_title | Statistics in medicine |
container_volume | 41 |
creator | Kawaguchi, Eric S. Li, Gang Lewinger, Juan Pablo Gauderman, W. James |
description | Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS. |
doi_str_mv | 10.1002/sim.9319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648890630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</originalsourceid><addsrcrecordid>eNp1kc1uEzEURi0EoqEg8QTIEptupvhnPLY3lVDV0kpFLChry_HcJK4y9mA7SbPrI_QZ-yR1SKnKgpVl3ePPR_dD6CMlx5QQ9iX74Vhzql-hCSVaNoQJ9RpNCJOy6SQVB-hdzjeEUCqYfIsOuCBSdK2eoNvrTXy4u88FRrzYjrEsIPuMC-TiwxyXiHso4AqeQ4AKQlj7FMMAoWAfCiTrio8h1wu2OygOO2zje8DZ2YA3vizqJK_S2q_tEkPox1hfvkdvZnaZ4cPTeYh-nZ9dn140Vz--XZ5-vWpcy5VuKGdkJrRmtsorKnuie9FOq7vibCaBKJg6KZSkzInO6dZx21canHCK65YfopN97riaDtC7Kp7s0ozJDzZtTbTe_DsJfmHmcW00IVJpVgM-PwWk-HtV92Ju4iqF6mxY1yqlScdJpY72lEsx5wSz5x8oMbuOTO3I7Dqq6KeXRs_g31Iq0OyBjV_C9r9B5ufl9z-Bj_NFoI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648890630</pqid></control><display><type>article</type><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</creator><creatorcontrib>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</creatorcontrib><description>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9319</identifier><identifier>PMID: 35075649</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Breast cancer ; censoring ; Computer Simulation ; Cox proportional hazards model ; Gene expression ; Gene-Environment Interaction ; Genome-Wide Association Study - methods ; Genomes ; Humans ; Hypotheses ; Hypothesis testing ; Models, Genetic ; personalized medicine ; Polymorphism, Single Nucleotide ; survival analysis</subject><ispartof>Statistics in medicine, 2022-04, Vol.41 (9), p.1644-1657</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</citedby><cites>FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</cites><orcidid>0000-0003-2014-5023 ; 0000-0002-4753-9420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35075649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawaguchi, Eric S.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Lewinger, Juan Pablo</creatorcontrib><creatorcontrib>Gauderman, W. James</creatorcontrib><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</description><subject>Breast cancer</subject><subject>censoring</subject><subject>Computer Simulation</subject><subject>Cox proportional hazards model</subject><subject>Gene expression</subject><subject>Gene-Environment Interaction</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Models, Genetic</subject><subject>personalized medicine</subject><subject>Polymorphism, Single Nucleotide</subject><subject>survival analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEURi0EoqEg8QTIEptupvhnPLY3lVDV0kpFLChry_HcJK4y9mA7SbPrI_QZ-yR1SKnKgpVl3ePPR_dD6CMlx5QQ9iX74Vhzql-hCSVaNoQJ9RpNCJOy6SQVB-hdzjeEUCqYfIsOuCBSdK2eoNvrTXy4u88FRrzYjrEsIPuMC-TiwxyXiHso4AqeQ4AKQlj7FMMAoWAfCiTrio8h1wu2OygOO2zje8DZ2YA3vizqJK_S2q_tEkPox1hfvkdvZnaZ4cPTeYh-nZ9dn140Vz--XZ5-vWpcy5VuKGdkJrRmtsorKnuie9FOq7vibCaBKJg6KZSkzInO6dZx21canHCK65YfopN97riaDtC7Kp7s0ozJDzZtTbTe_DsJfmHmcW00IVJpVgM-PwWk-HtV92Ju4iqF6mxY1yqlScdJpY72lEsx5wSz5x8oMbuOTO3I7Dqq6KeXRs_g31Iq0OyBjV_C9r9B5ufl9z-Bj_NFoI8</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Kawaguchi, Eric S.</creator><creator>Li, Gang</creator><creator>Lewinger, Juan Pablo</creator><creator>Gauderman, W. James</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2014-5023</orcidid><orcidid>https://orcid.org/0000-0002-4753-9420</orcidid></search><sort><creationdate>20220430</creationdate><title>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</title><author>Kawaguchi, Eric S. ; Li, Gang ; Lewinger, Juan Pablo ; Gauderman, W. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-1320f5992a011817d09d54b649832f7e08ebc758712c56c94c3ad92aec5c83943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>censoring</topic><topic>Computer Simulation</topic><topic>Cox proportional hazards model</topic><topic>Gene expression</topic><topic>Gene-Environment Interaction</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Models, Genetic</topic><topic>personalized medicine</topic><topic>Polymorphism, Single Nucleotide</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Eric S.</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Lewinger, Juan Pablo</creatorcontrib><creatorcontrib>Gauderman, W. James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Eric S.</au><au>Li, Gang</au><au>Lewinger, Juan Pablo</au><au>Gauderman, W. James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-04-30</date><risdate>2022</risdate><volume>41</volume><issue>9</issue><spage>1644</spage><epage>1657</epage><pages>1644-1657</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an environmental exposure. Identifying subgroups based on specific exposure‐modifying genes can lead to targeted interventions and focused studies. Genome‐wide interaction scans (GWIS) can be performed to identify such genes, but these scans typically suffer from low power due to the large multiple testing burden. We provide a novel framework for powerful two‐step hypothesis tests for GWIS with a time‐to‐event endpoint under the Cox proportional hazards model. In the Cox regression setting, we develop an approach that prioritizes genes for Step‐2 G×E testing based on a carefully constructed Step‐1 screening procedure. Simulation results demonstrate this two‐step approach can lead to substantially higher power for identifying gene‐environment (G×E) interactions compared to the standard GWIS while preserving the family wise error rate over a range of scenarios. In a taxane‐anthracycline chemotherapy study for breast cancer patients, the two‐step approach identifies several gene expression by treatment interactions that would not be detected using the standard GWIS.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35075649</pmid><doi>10.1002/sim.9319</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2014-5023</orcidid><orcidid>https://orcid.org/0000-0002-4753-9420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2022-04, Vol.41 (9), p.1644-1657 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007892 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Breast cancer censoring Computer Simulation Cox proportional hazards model Gene expression Gene-Environment Interaction Genome-Wide Association Study - methods Genomes Humans Hypotheses Hypothesis testing Models, Genetic personalized medicine Polymorphism, Single Nucleotide survival analysis |
title | Two‐step hypothesis testing to detect gene‐environment interactions in a genome‐wide scan with a survival endpoint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90step%20hypothesis%20testing%20to%20detect%20gene%E2%80%90environment%20interactions%20in%20a%20genome%E2%80%90wide%20scan%20with%20a%20survival%20endpoint&rft.jtitle=Statistics%20in%20medicine&rft.au=Kawaguchi,%20Eric%20S.&rft.date=2022-04-30&rft.volume=41&rft.issue=9&rft.spage=1644&rft.epage=1657&rft.pages=1644-1657&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9319&rft_dat=%3Cproquest_pubme%3E2648890630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648890630&rft_id=info:pmid/35075649&rfr_iscdi=true |