Semiconducting Polymers for Neural Applications
Electronically interfacing with the nervous system for the purposes of health diagnostics and therapy, sports performance monitoring, or device control has been a subject of intense academic and industrial research for decades. This trend has only increased in recent years, with numerous high-profil...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2022-02, Vol.122 (4), p.4356-4396 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4396 |
---|---|
container_issue | 4 |
container_start_page | 4356 |
container_title | Chemical reviews |
container_volume | 122 |
creator | Dimov, Ivan B Moser, Maximilian Malliaras, George G McCulloch, Iain |
description | Electronically interfacing with the nervous system for the purposes of health diagnostics and therapy, sports performance monitoring, or device control has been a subject of intense academic and industrial research for decades. This trend has only increased in recent years, with numerous high-profile research initiatives and commercial endeavors. An important research theme has emerged as a result, which is the incorporation of semiconducting polymers in various devices that communicate with the nervous systemfrom wearable brain-monitoring caps to penetrating implantable microelectrodes. This has been driven by the potential of this broad class of materials to improve the electrical and mechanical properties of the tissue–device interface, along with possibilities for increased biocompatibility. In this review we first begin with a tutorial on neural interfacing, by reviewing the basics of nervous system function, device physics, and neuroelectrophysiological techniques and their demands, and finally we give a brief perspective on how material improvements can address current deficiencies in this system. The second part is a detailed review of past work on semiconducting polymers, covering electrical properties, structure, synthesis, and processing. |
doi_str_mv | 10.1021/acs.chemrev.1c00685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633263448</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-3a60d33a72a17ac9bbdb3a216ef392446f84d598fa8dec8abe8cd808288467353</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMobk5_gSADb7zplu-mN8IYfsFQQb0OaZpuHW1Tk3awf2_G6lAvvAiHcJ73PefwAnCJ4ARBjKZK-4lemcqZzQRpCLlgR2CIGIYRFwk8BkMIYRJhztkAnHm_Dl_GcHwKBoTBQCA8BNM3UxXa1lmn26Jejl9tua2M8-PcuvGz6Zwqx7OmKQut2sLW_hyc5Kr05qKvI_Bxf_c-f4wWLw9P89kiUowkbUQUhxkhKsYKxUonaZqlRGHETU4STCnPBc1YInIlMqOFSo3QmYACC0F5TBgZgdu9b9Ollcm0qduwimxcUSm3lVYV8nenLlZyaTcygTCmnAaDm97A2c_O-FZWhdemLFVtbOcl5piIBBG8m3X9B13bztXhvEAREh6lIlBkT2lnvXcmPyyDoNwFIkMgsg9E9oEE1dXPOw6a7wQCMN0DO_Vh7n-WX-nemfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633263448</pqid></control><display><type>article</type><title>Semiconducting Polymers for Neural Applications</title><source>ACS Publications</source><source>MEDLINE</source><creator>Dimov, Ivan B ; Moser, Maximilian ; Malliaras, George G ; McCulloch, Iain</creator><creatorcontrib>Dimov, Ivan B ; Moser, Maximilian ; Malliaras, George G ; McCulloch, Iain</creatorcontrib><description>Electronically interfacing with the nervous system for the purposes of health diagnostics and therapy, sports performance monitoring, or device control has been a subject of intense academic and industrial research for decades. This trend has only increased in recent years, with numerous high-profile research initiatives and commercial endeavors. An important research theme has emerged as a result, which is the incorporation of semiconducting polymers in various devices that communicate with the nervous systemfrom wearable brain-monitoring caps to penetrating implantable microelectrodes. This has been driven by the potential of this broad class of materials to improve the electrical and mechanical properties of the tissue–device interface, along with possibilities for increased biocompatibility. In this review we first begin with a tutorial on neural interfacing, by reviewing the basics of nervous system function, device physics, and neuroelectrophysiological techniques and their demands, and finally we give a brief perspective on how material improvements can address current deficiencies in this system. The second part is a detailed review of past work on semiconducting polymers, covering electrical properties, structure, synthesis, and processing.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.1c00685</identifier><identifier>PMID: 35089012</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatibility ; Brain ; Chemical synthesis ; Electrical properties ; Industrial research ; Mechanical properties ; Microelectrodes ; Nervous System ; Polymers ; Polymers - chemistry ; Prostheses and Implants ; R&D ; Research & development ; Review</subject><ispartof>Chemical reviews, 2022-02, Vol.122 (4), p.4356-4396</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 23, 2022</rights><rights>2022 American Chemical Society 2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-3a60d33a72a17ac9bbdb3a216ef392446f84d598fa8dec8abe8cd808288467353</citedby><cites>FETCH-LOGICAL-a539t-3a60d33a72a17ac9bbdb3a216ef392446f84d598fa8dec8abe8cd808288467353</cites><orcidid>0000-0002-3293-9309 ; 0000-0002-4582-8501 ; 0000-0002-6340-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.1c00685$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.1c00685$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35089012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimov, Ivan B</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Malliaras, George G</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><title>Semiconducting Polymers for Neural Applications</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Electronically interfacing with the nervous system for the purposes of health diagnostics and therapy, sports performance monitoring, or device control has been a subject of intense academic and industrial research for decades. This trend has only increased in recent years, with numerous high-profile research initiatives and commercial endeavors. An important research theme has emerged as a result, which is the incorporation of semiconducting polymers in various devices that communicate with the nervous systemfrom wearable brain-monitoring caps to penetrating implantable microelectrodes. This has been driven by the potential of this broad class of materials to improve the electrical and mechanical properties of the tissue–device interface, along with possibilities for increased biocompatibility. In this review we first begin with a tutorial on neural interfacing, by reviewing the basics of nervous system function, device physics, and neuroelectrophysiological techniques and their demands, and finally we give a brief perspective on how material improvements can address current deficiencies in this system. The second part is a detailed review of past work on semiconducting polymers, covering electrical properties, structure, synthesis, and processing.</description><subject>Biocompatibility</subject><subject>Brain</subject><subject>Chemical synthesis</subject><subject>Electrical properties</subject><subject>Industrial research</subject><subject>Mechanical properties</subject><subject>Microelectrodes</subject><subject>Nervous System</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Prostheses and Implants</subject><subject>R&D</subject><subject>Research & development</subject><subject>Review</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1LwzAUhoMobk5_gSADb7zplu-mN8IYfsFQQb0OaZpuHW1Tk3awf2_G6lAvvAiHcJ73PefwAnCJ4ARBjKZK-4lemcqZzQRpCLlgR2CIGIYRFwk8BkMIYRJhztkAnHm_Dl_GcHwKBoTBQCA8BNM3UxXa1lmn26Jejl9tua2M8-PcuvGz6Zwqx7OmKQut2sLW_hyc5Kr05qKvI_Bxf_c-f4wWLw9P89kiUowkbUQUhxkhKsYKxUonaZqlRGHETU4STCnPBc1YInIlMqOFSo3QmYACC0F5TBgZgdu9b9Ollcm0qduwimxcUSm3lVYV8nenLlZyaTcygTCmnAaDm97A2c_O-FZWhdemLFVtbOcl5piIBBG8m3X9B13bztXhvEAREh6lIlBkT2lnvXcmPyyDoNwFIkMgsg9E9oEE1dXPOw6a7wQCMN0DO_Vh7n-WX-nemfY</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Dimov, Ivan B</creator><creator>Moser, Maximilian</creator><creator>Malliaras, George G</creator><creator>McCulloch, Iain</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3293-9309</orcidid><orcidid>https://orcid.org/0000-0002-4582-8501</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid></search><sort><creationdate>20220223</creationdate><title>Semiconducting Polymers for Neural Applications</title><author>Dimov, Ivan B ; Moser, Maximilian ; Malliaras, George G ; McCulloch, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-3a60d33a72a17ac9bbdb3a216ef392446f84d598fa8dec8abe8cd808288467353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Brain</topic><topic>Chemical synthesis</topic><topic>Electrical properties</topic><topic>Industrial research</topic><topic>Mechanical properties</topic><topic>Microelectrodes</topic><topic>Nervous System</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Prostheses and Implants</topic><topic>R&D</topic><topic>Research & development</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimov, Ivan B</creatorcontrib><creatorcontrib>Moser, Maximilian</creatorcontrib><creatorcontrib>Malliaras, George G</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimov, Ivan B</au><au>Moser, Maximilian</au><au>Malliaras, George G</au><au>McCulloch, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconducting Polymers for Neural Applications</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2022-02-23</date><risdate>2022</risdate><volume>122</volume><issue>4</issue><spage>4356</spage><epage>4396</epage><pages>4356-4396</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Electronically interfacing with the nervous system for the purposes of health diagnostics and therapy, sports performance monitoring, or device control has been a subject of intense academic and industrial research for decades. This trend has only increased in recent years, with numerous high-profile research initiatives and commercial endeavors. An important research theme has emerged as a result, which is the incorporation of semiconducting polymers in various devices that communicate with the nervous systemfrom wearable brain-monitoring caps to penetrating implantable microelectrodes. This has been driven by the potential of this broad class of materials to improve the electrical and mechanical properties of the tissue–device interface, along with possibilities for increased biocompatibility. In this review we first begin with a tutorial on neural interfacing, by reviewing the basics of nervous system function, device physics, and neuroelectrophysiological techniques and their demands, and finally we give a brief perspective on how material improvements can address current deficiencies in this system. The second part is a detailed review of past work on semiconducting polymers, covering electrical properties, structure, synthesis, and processing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35089012</pmid><doi>10.1021/acs.chemrev.1c00685</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-3293-9309</orcidid><orcidid>https://orcid.org/0000-0002-4582-8501</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2022-02, Vol.122 (4), p.4356-4396 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007464 |
source | ACS Publications; MEDLINE |
subjects | Biocompatibility Brain Chemical synthesis Electrical properties Industrial research Mechanical properties Microelectrodes Nervous System Polymers Polymers - chemistry Prostheses and Implants R&D Research & development Review |
title | Semiconducting Polymers for Neural Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconducting%20Polymers%20for%20Neural%20Applications&rft.jtitle=Chemical%20reviews&rft.au=Dimov,%20Ivan%20B&rft.date=2022-02-23&rft.volume=122&rft.issue=4&rft.spage=4356&rft.epage=4396&rft.pages=4356-4396&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.1c00685&rft_dat=%3Cproquest_pubme%3E2633263448%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633263448&rft_id=info:pmid/35089012&rfr_iscdi=true |