Exploiting the Synergy between Concentrated Polymer Brushes and Laser Surface Texturing to Achieve Durable Superlubricity

Friction continues to account for the bulk of energy losses in mechanical systems, with an estimated 23% of the world’s total energy consumption used to overcome friction. Concentrated polymer brushes (CPBs) have recently attracted significant scientific and industrial attention, given their ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-04, Vol.14 (13), p.15818-15829
Hauptverfasser: Vlădescu, Sorin-Cristian, Tadokoro, Chiharu, Miyazaki, Mayu, Reddyhoff, Tom, Nagamine, Takuo, Nakano, Ken, Sasaki, Shinya, Tsujii, Yoshinobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Friction continues to account for the bulk of energy losses in mechanical systems, with an estimated 23% of the world’s total energy consumption used to overcome friction. Concentrated polymer brushes (CPBs) have recently attracted significant scientific and industrial attention, given their ability to achieve superlubricity (i.e., coefficients of friction below 0.01); however, understanding the mechanistic interactions underlying their wear performance has been largely overlooked. Herein, we employ a custom-built optical test apparatus to investigate the inter-dependencies between CPBs and laser-produced surface texture (LST), assessing for the first time the friction, film thickness, and wear behavior in situ and simultaneously. Recent developments in picosecond laser etching allowed us to graft CPBs atop the finest laser-etched matrix of micron-sized dimples reported in literature to date. At low sliding speeds, combined CPB–LST reduces the coefficient of friction to 0.0006, while increasing the CPB durability by up to 34% through a lateral support mechanism offered by the textured micro-features. Furthermore, the imaging results shed light on CPB failure mechanisms. Both these mechanisms of lateral support and failure propagation impact the wear resistance of CPBs and are important in the development of CPBs for future applications (e.g., in low-speed bearings functioning under controlled abrasive wear conditions).
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c00725