Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells
The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprote...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2022-01, Vol.23 (1), p.34-46 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | Biomacromolecules |
container_volume | 23 |
creator | Stockmal, Kelli A Downs, Latoyia P Davis, Ashley N Kemp, Lisa K Karim, Shahid Morgan, Sarah E |
description | The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio. |
doi_str_mv | 10.1021/acs.biomac.1c00824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599181419</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAfZo5et-dpkcxFK8aNQFKSeQzY7q9HtpiZbof_eaKvoxdMMzPu-M_MgdErwmGBKLoyN48r5pbFjYjEuKd9DQ1JQkXOB6f5XX-RSKjlARzG-YIwV48UhGjAuFSNUDdFkanrnO2ezm3Zj_cq3G2jB9iE1PcSs8SF7uJtks66H0ECAzkLmumzh7Gs2hbaNx-igMW2Ek10docfrq8X0Np_f38ymk3luOCd9XleqlLghoqaSESlqXNQFxpJBI5QQlldS1ZawugJWllwCVGlQc0sZE0o2bIQut7mrdbWE2kLXB9PqVXBLEzbaG6f_Tjr3rJ_8u1YYC16KFHC-Cwj-bQ2x10sXbXrBdODXUdNCKVISTlSS0q3UBh9jgOZnDcH6k71O7PWWvd6xT6az3wf-WL5hJ8F4K_g0v_h16BKv_xI_AGVkkoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599181419</pqid></control><display><type>article</type><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</creator><creatorcontrib>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</creatorcontrib><description>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.1c00824</identifier><identifier>PMID: 34793129</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Arthropod Proteins - metabolism ; Borrelia burgdorferi - metabolism ; Ixodes - genetics ; Ixodes - metabolism ; Ixodes - microbiology ; Lyme Disease - genetics ; Lyme Disease - microbiology ; RNA Interference</subject><ispartof>Biomacromolecules, 2022-01, Vol.23 (1), p.34-46</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</citedby><cites>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</cites><orcidid>0000-0002-8796-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.1c00824$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.1c00824$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34793129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockmal, Kelli A</creatorcontrib><creatorcontrib>Downs, Latoyia P</creatorcontrib><creatorcontrib>Davis, Ashley N</creatorcontrib><creatorcontrib>Kemp, Lisa K</creatorcontrib><creatorcontrib>Karim, Shahid</creatorcontrib><creatorcontrib>Morgan, Sarah E</creatorcontrib><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</description><subject>Animals</subject><subject>Arthropod Proteins - metabolism</subject><subject>Borrelia burgdorferi - metabolism</subject><subject>Ixodes - genetics</subject><subject>Ixodes - metabolism</subject><subject>Ixodes - microbiology</subject><subject>Lyme Disease - genetics</subject><subject>Lyme Disease - microbiology</subject><subject>RNA Interference</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAfZo5et-dpkcxFK8aNQFKSeQzY7q9HtpiZbof_eaKvoxdMMzPu-M_MgdErwmGBKLoyN48r5pbFjYjEuKd9DQ1JQkXOB6f5XX-RSKjlARzG-YIwV48UhGjAuFSNUDdFkanrnO2ezm3Zj_cq3G2jB9iE1PcSs8SF7uJtks66H0ECAzkLmumzh7Gs2hbaNx-igMW2Ek10docfrq8X0Np_f38ymk3luOCd9XleqlLghoqaSESlqXNQFxpJBI5QQlldS1ZawugJWllwCVGlQc0sZE0o2bIQut7mrdbWE2kLXB9PqVXBLEzbaG6f_Tjr3rJ_8u1YYC16KFHC-Cwj-bQ2x10sXbXrBdODXUdNCKVISTlSS0q3UBh9jgOZnDcH6k71O7PWWvd6xT6az3wf-WL5hJ8F4K_g0v_h16BKv_xI_AGVkkoc</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Stockmal, Kelli A</creator><creator>Downs, Latoyia P</creator><creator>Davis, Ashley N</creator><creator>Kemp, Lisa K</creator><creator>Karim, Shahid</creator><creator>Morgan, Sarah E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid></search><sort><creationdate>20220110</creationdate><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><author>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Arthropod Proteins - metabolism</topic><topic>Borrelia burgdorferi - metabolism</topic><topic>Ixodes - genetics</topic><topic>Ixodes - metabolism</topic><topic>Ixodes - microbiology</topic><topic>Lyme Disease - genetics</topic><topic>Lyme Disease - microbiology</topic><topic>RNA Interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockmal, Kelli A</creatorcontrib><creatorcontrib>Downs, Latoyia P</creatorcontrib><creatorcontrib>Davis, Ashley N</creatorcontrib><creatorcontrib>Kemp, Lisa K</creatorcontrib><creatorcontrib>Karim, Shahid</creatorcontrib><creatorcontrib>Morgan, Sarah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockmal, Kelli A</au><au>Downs, Latoyia P</au><au>Davis, Ashley N</au><au>Kemp, Lisa K</au><au>Karim, Shahid</au><au>Morgan, Sarah E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2022-01-10</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>34</spage><epage>46</epage><pages>34-46</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34793129</pmid><doi>10.1021/acs.biomac.1c00824</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2022-01, Vol.23 (1), p.34-46 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006486 |
source | MEDLINE; ACS Publications |
subjects | Animals Arthropod Proteins - metabolism Borrelia burgdorferi - metabolism Ixodes - genetics Ixodes - metabolism Ixodes - microbiology Lyme Disease - genetics Lyme Disease - microbiology RNA Interference |
title | Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cationic%20Glycopolyelectrolytes%20for%20RNA%20Interference%20in%20Tick%20Cells&rft.jtitle=Biomacromolecules&rft.au=Stockmal,%20Kelli%20A&rft.date=2022-01-10&rft.volume=23&rft.issue=1&rft.spage=34&rft.epage=46&rft.pages=34-46&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.1c00824&rft_dat=%3Cproquest_pubme%3E2599181419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599181419&rft_id=info:pmid/34793129&rfr_iscdi=true |