Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells

The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2022-01, Vol.23 (1), p.34-46
Hauptverfasser: Stockmal, Kelli A, Downs, Latoyia P, Davis, Ashley N, Kemp, Lisa K, Karim, Shahid, Morgan, Sarah E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 34
container_title Biomacromolecules
container_volume 23
creator Stockmal, Kelli A
Downs, Latoyia P
Davis, Ashley N
Kemp, Lisa K
Karim, Shahid
Morgan, Sarah E
description The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.
doi_str_mv 10.1021/acs.biomac.1c00824
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599181419</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAfZo5et-dpkcxFK8aNQFKSeQzY7q9HtpiZbof_eaKvoxdMMzPu-M_MgdErwmGBKLoyN48r5pbFjYjEuKd9DQ1JQkXOB6f5XX-RSKjlARzG-YIwV48UhGjAuFSNUDdFkanrnO2ezm3Zj_cq3G2jB9iE1PcSs8SF7uJtks66H0ECAzkLmumzh7Gs2hbaNx-igMW2Ek10docfrq8X0Np_f38ymk3luOCd9XleqlLghoqaSESlqXNQFxpJBI5QQlldS1ZawugJWllwCVGlQc0sZE0o2bIQut7mrdbWE2kLXB9PqVXBLEzbaG6f_Tjr3rJ_8u1YYC16KFHC-Cwj-bQ2x10sXbXrBdODXUdNCKVISTlSS0q3UBh9jgOZnDcH6k71O7PWWvd6xT6az3wf-WL5hJ8F4K_g0v_h16BKv_xI_AGVkkoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599181419</pqid></control><display><type>article</type><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</creator><creatorcontrib>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</creatorcontrib><description>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.1c00824</identifier><identifier>PMID: 34793129</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Arthropod Proteins - metabolism ; Borrelia burgdorferi - metabolism ; Ixodes - genetics ; Ixodes - metabolism ; Ixodes - microbiology ; Lyme Disease - genetics ; Lyme Disease - microbiology ; RNA Interference</subject><ispartof>Biomacromolecules, 2022-01, Vol.23 (1), p.34-46</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</citedby><cites>FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</cites><orcidid>0000-0002-8796-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.1c00824$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.1c00824$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34793129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockmal, Kelli A</creatorcontrib><creatorcontrib>Downs, Latoyia P</creatorcontrib><creatorcontrib>Davis, Ashley N</creatorcontrib><creatorcontrib>Kemp, Lisa K</creatorcontrib><creatorcontrib>Karim, Shahid</creatorcontrib><creatorcontrib>Morgan, Sarah E</creatorcontrib><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</description><subject>Animals</subject><subject>Arthropod Proteins - metabolism</subject><subject>Borrelia burgdorferi - metabolism</subject><subject>Ixodes - genetics</subject><subject>Ixodes - metabolism</subject><subject>Ixodes - microbiology</subject><subject>Lyme Disease - genetics</subject><subject>Lyme Disease - microbiology</subject><subject>RNA Interference</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAfZo5et-dpkcxFK8aNQFKSeQzY7q9HtpiZbof_eaKvoxdMMzPu-M_MgdErwmGBKLoyN48r5pbFjYjEuKd9DQ1JQkXOB6f5XX-RSKjlARzG-YIwV48UhGjAuFSNUDdFkanrnO2ezm3Zj_cq3G2jB9iE1PcSs8SF7uJtks66H0ECAzkLmumzh7Gs2hbaNx-igMW2Ek10docfrq8X0Np_f38ymk3luOCd9XleqlLghoqaSESlqXNQFxpJBI5QQlldS1ZawugJWllwCVGlQc0sZE0o2bIQut7mrdbWE2kLXB9PqVXBLEzbaG6f_Tjr3rJ_8u1YYC16KFHC-Cwj-bQ2x10sXbXrBdODXUdNCKVISTlSS0q3UBh9jgOZnDcH6k71O7PWWvd6xT6az3wf-WL5hJ8F4K_g0v_h16BKv_xI_AGVkkoc</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Stockmal, Kelli A</creator><creator>Downs, Latoyia P</creator><creator>Davis, Ashley N</creator><creator>Kemp, Lisa K</creator><creator>Karim, Shahid</creator><creator>Morgan, Sarah E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid></search><sort><creationdate>20220110</creationdate><title>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</title><author>Stockmal, Kelli A ; Downs, Latoyia P ; Davis, Ashley N ; Kemp, Lisa K ; Karim, Shahid ; Morgan, Sarah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-db9870f16d273176d05d50073ef6966c4b79dc13dbe38847eebf69d4c233697f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Arthropod Proteins - metabolism</topic><topic>Borrelia burgdorferi - metabolism</topic><topic>Ixodes - genetics</topic><topic>Ixodes - metabolism</topic><topic>Ixodes - microbiology</topic><topic>Lyme Disease - genetics</topic><topic>Lyme Disease - microbiology</topic><topic>RNA Interference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockmal, Kelli A</creatorcontrib><creatorcontrib>Downs, Latoyia P</creatorcontrib><creatorcontrib>Davis, Ashley N</creatorcontrib><creatorcontrib>Kemp, Lisa K</creatorcontrib><creatorcontrib>Karim, Shahid</creatorcontrib><creatorcontrib>Morgan, Sarah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockmal, Kelli A</au><au>Downs, Latoyia P</au><au>Davis, Ashley N</au><au>Kemp, Lisa K</au><au>Karim, Shahid</au><au>Morgan, Sarah E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2022-01-10</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>34</spage><epage>46</epage><pages>34-46</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector–host–pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition–fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34793129</pmid><doi>10.1021/acs.biomac.1c00824</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2022-01, Vol.23 (1), p.34-46
issn 1525-7797
1526-4602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9006486
source MEDLINE; ACS Publications
subjects Animals
Arthropod Proteins - metabolism
Borrelia burgdorferi - metabolism
Ixodes - genetics
Ixodes - metabolism
Ixodes - microbiology
Lyme Disease - genetics
Lyme Disease - microbiology
RNA Interference
title Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cationic%20Glycopolyelectrolytes%20for%20RNA%20Interference%20in%20Tick%20Cells&rft.jtitle=Biomacromolecules&rft.au=Stockmal,%20Kelli%20A&rft.date=2022-01-10&rft.volume=23&rft.issue=1&rft.spage=34&rft.epage=46&rft.pages=34-46&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.1c00824&rft_dat=%3Cproquest_pubme%3E2599181419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599181419&rft_id=info:pmid/34793129&rfr_iscdi=true