NeuCA web server: a neural network-based cell annotation tool with web-app and GUI

Abstract Summary Correctly annotating individual cell’s type is an important initial step in single-cell RNA sequencing (scRNA-seq) data analysis. Here, we present NeuCA web server, a neural network-based scRNA-seq cell annotation tool with web-app portal and graphical user interface, for automatica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2022-04, Vol.38 (8), p.2361-2363
Hauptverfasser: Duan, Daoyu, He, Sijia, Huang, Emina, Li, Ziyi, Feng, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2363
container_issue 8
container_start_page 2361
container_title Bioinformatics
container_volume 38
creator Duan, Daoyu
He, Sijia
Huang, Emina
Li, Ziyi
Feng, Hao
description Abstract Summary Correctly annotating individual cell’s type is an important initial step in single-cell RNA sequencing (scRNA-seq) data analysis. Here, we present NeuCA web server, a neural network-based scRNA-seq cell annotation tool with web-app portal and graphical user interface, for automatically assigning cell labels. NeuCA algorithm is accurate and exhaustive, maximizing the usage of measured cells for downstream analysis. NeuCA web server provides over 20 ready-to-use pre-trained classifiers for commonly used tissue types. As the first web-app tool with neural-network infrastructure implemented, NeuCA web will facilitate the research community in analyzing and annotating scRNA-seq data. Availability and implementation NeuCA web server is implemented with R Shiny application online at https://statbioinfo.shinyapps.io/NeuCA/. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btac108
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9004646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac108</oup_id><sourcerecordid>2630931595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-331d21132ef9017107f2a015337fd2426f59592c7428a82fe83e8e097e9771753</originalsourceid><addsrcrecordid>eNqNUctu2zAQJIoUjeP2FwIee1HD5UOUeihgGHkYMFqgaM4EJa0SpbKokJSN_H1p2AniW0-7wM7Mzu4QcgnsG7BSXFWd64bW-Y2NXR2uqmhrYMUHMgOZs4wzVZ6lXuQ6kwUT5-QihCfGFEgpP5FzoUDnIMWM_P6J03JBd1jRgH6L_ju1dMDJ2z6VuHP-b1bZgA2tse-pHQYX00o30OhcT3ddfNyTMzuOadjQ2_vVZ_KxtX3AL8c6J_c313-Wd9n61-1quVhntVAqZkJAwwEEx7ZkoIHpllsGSgjdNlzyvFWlKnmtJS9swVssBBbISo2l1qCVmJMfB91xqjbY1DjE5NqMvttY_2Kc7czpZOgezYPbmpIxmcs8CXw9Cnj3PGGIZtOF_Zl2QDcFw3ORXg3JRoLmB2jtXQge27c1wMw-EHMaiDkGkoiX702-0V4TSAA4ANw0_q_oP5pKnbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630931595</pqid></control><display><type>article</type><title>NeuCA web server: a neural network-based cell annotation tool with web-app and GUI</title><source>Oxford Journals Open Access Collection</source><creator>Duan, Daoyu ; He, Sijia ; Huang, Emina ; Li, Ziyi ; Feng, Hao</creator><creatorcontrib>Duan, Daoyu ; He, Sijia ; Huang, Emina ; Li, Ziyi ; Feng, Hao</creatorcontrib><description>Abstract Summary Correctly annotating individual cell’s type is an important initial step in single-cell RNA sequencing (scRNA-seq) data analysis. Here, we present NeuCA web server, a neural network-based scRNA-seq cell annotation tool with web-app portal and graphical user interface, for automatically assigning cell labels. NeuCA algorithm is accurate and exhaustive, maximizing the usage of measured cells for downstream analysis. NeuCA web server provides over 20 ready-to-use pre-trained classifiers for commonly used tissue types. As the first web-app tool with neural-network infrastructure implemented, NeuCA web will facilitate the research community in analyzing and annotating scRNA-seq data. Availability and implementation NeuCA web server is implemented with R Shiny application online at https://statbioinfo.shinyapps.io/NeuCA/. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac108</identifier><identifier>PMID: 35176143</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Computers ; Mobile Applications ; Neural Networks, Computer ; Software</subject><ispartof>Bioinformatics, 2022-04, Vol.38 (8), p.2361-2363</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-331d21132ef9017107f2a015337fd2426f59592c7428a82fe83e8e097e9771753</cites><orcidid>0000-0002-3147-2006 ; 0000-0001-8359-0533 ; 0000-0003-2243-9949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004646/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004646/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac108$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35176143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Daoyu</creatorcontrib><creatorcontrib>He, Sijia</creatorcontrib><creatorcontrib>Huang, Emina</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><title>NeuCA web server: a neural network-based cell annotation tool with web-app and GUI</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Summary Correctly annotating individual cell’s type is an important initial step in single-cell RNA sequencing (scRNA-seq) data analysis. Here, we present NeuCA web server, a neural network-based scRNA-seq cell annotation tool with web-app portal and graphical user interface, for automatically assigning cell labels. NeuCA algorithm is accurate and exhaustive, maximizing the usage of measured cells for downstream analysis. NeuCA web server provides over 20 ready-to-use pre-trained classifiers for commonly used tissue types. As the first web-app tool with neural-network infrastructure implemented, NeuCA web will facilitate the research community in analyzing and annotating scRNA-seq data. Availability and implementation NeuCA web server is implemented with R Shiny application online at https://statbioinfo.shinyapps.io/NeuCA/. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Computers</subject><subject>Mobile Applications</subject><subject>Neural Networks, Computer</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUctu2zAQJIoUjeP2FwIee1HD5UOUeihgGHkYMFqgaM4EJa0SpbKokJSN_H1p2AniW0-7wM7Mzu4QcgnsG7BSXFWd64bW-Y2NXR2uqmhrYMUHMgOZs4wzVZ6lXuQ6kwUT5-QihCfGFEgpP5FzoUDnIMWM_P6J03JBd1jRgH6L_ju1dMDJ2z6VuHP-b1bZgA2tse-pHQYX00o30OhcT3ddfNyTMzuOadjQ2_vVZ_KxtX3AL8c6J_c313-Wd9n61-1quVhntVAqZkJAwwEEx7ZkoIHpllsGSgjdNlzyvFWlKnmtJS9swVssBBbISo2l1qCVmJMfB91xqjbY1DjE5NqMvttY_2Kc7czpZOgezYPbmpIxmcs8CXw9Cnj3PGGIZtOF_Zl2QDcFw3ORXg3JRoLmB2jtXQge27c1wMw-EHMaiDkGkoiX702-0V4TSAA4ANw0_q_oP5pKnbk</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Duan, Daoyu</creator><creator>He, Sijia</creator><creator>Huang, Emina</creator><creator>Li, Ziyi</creator><creator>Feng, Hao</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3147-2006</orcidid><orcidid>https://orcid.org/0000-0001-8359-0533</orcidid><orcidid>https://orcid.org/0000-0003-2243-9949</orcidid></search><sort><creationdate>20220412</creationdate><title>NeuCA web server: a neural network-based cell annotation tool with web-app and GUI</title><author>Duan, Daoyu ; He, Sijia ; Huang, Emina ; Li, Ziyi ; Feng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-331d21132ef9017107f2a015337fd2426f59592c7428a82fe83e8e097e9771753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Computers</topic><topic>Mobile Applications</topic><topic>Neural Networks, Computer</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Daoyu</creatorcontrib><creatorcontrib>He, Sijia</creatorcontrib><creatorcontrib>Huang, Emina</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duan, Daoyu</au><au>He, Sijia</au><au>Huang, Emina</au><au>Li, Ziyi</au><au>Feng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeuCA web server: a neural network-based cell annotation tool with web-app and GUI</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>38</volume><issue>8</issue><spage>2361</spage><epage>2363</epage><pages>2361-2363</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Summary Correctly annotating individual cell’s type is an important initial step in single-cell RNA sequencing (scRNA-seq) data analysis. Here, we present NeuCA web server, a neural network-based scRNA-seq cell annotation tool with web-app portal and graphical user interface, for automatically assigning cell labels. NeuCA algorithm is accurate and exhaustive, maximizing the usage of measured cells for downstream analysis. NeuCA web server provides over 20 ready-to-use pre-trained classifiers for commonly used tissue types. As the first web-app tool with neural-network infrastructure implemented, NeuCA web will facilitate the research community in analyzing and annotating scRNA-seq data. Availability and implementation NeuCA web server is implemented with R Shiny application online at https://statbioinfo.shinyapps.io/NeuCA/. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35176143</pmid><doi>10.1093/bioinformatics/btac108</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-3147-2006</orcidid><orcidid>https://orcid.org/0000-0001-8359-0533</orcidid><orcidid>https://orcid.org/0000-0003-2243-9949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2022-04, Vol.38 (8), p.2361-2363
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9004646
source Oxford Journals Open Access Collection
subjects Algorithms
Applications Note
Computers
Mobile Applications
Neural Networks, Computer
Software
title NeuCA web server: a neural network-based cell annotation tool with web-app and GUI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeuCA%20web%20server:%20a%20neural%20network-based%20cell%20annotation%20tool%20with%20web-app%20and%20GUI&rft.jtitle=Bioinformatics&rft.au=Duan,%20Daoyu&rft.date=2022-04-12&rft.volume=38&rft.issue=8&rft.spage=2361&rft.epage=2363&rft.pages=2361-2363&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac108&rft_dat=%3Cproquest_TOX%3E2630931595%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630931595&rft_id=info:pmid/35176143&rft_oup_id=10.1093/bioinformatics/btac108&rfr_iscdi=true