Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor
Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent S...
Gespeichert in:
Veröffentlicht in: | ACS pharmacology & translational science 2022-04, Vol.5 (4), p.255-265 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 4 |
container_start_page | 255 |
container_title | ACS pharmacology & translational science |
container_volume | 5 |
creator | Glaser, Jens Sedova, Ada Galanie, Stephanie Kneller, Daniel W Davidson, Russell B Maradzike, Elvis Del Galdo, Sara Labbé, Audrey Hsu, Darren J Agarwal, Rupesh Bykov, Dmytro Tharrington, Arnold Parks, Jerry M Smith, Dayle M. A Daidone, Isabella Coates, Leighton Kovalevsky, Andrey Smith, Jeremy C |
description | Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 μM. Among these, four compounds with IC50 values around 1 μM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein–inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library. |
doi_str_mv | 10.1021/acsptsci.2c00026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9003389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652029666</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-a98decb77496a72cb1d044c64051e5869f8d7c197c360c450edbfcb264f95d393</originalsourceid><addsrcrecordid>eNp1kU9PFDEYxhuiAYLcOZkJJw8Ovu20nemFhGxQSFCMKNem807HLZlt17ZL9OZX8Cv6SexmF4IHTn2T_p7n_fMQckThhAKj7wymZU7oThgCAJM7ZJ-JVtSKQvfiSb1HDlO6WyMADVWwS_YawRsuGrpPZhcuV-c_l8YnF3wVxspUn4LHcG8m63N1c_blpp6F27-__7Dqo3G--hxDtibZ6tLPXe9yiK_Iy9FMyR5u3wPy7f3519lFfXX94XJ2dlUbLiHXRnWDxb5tuZKmZdjTAThHyUFQKzqpxm5okaoWGwnIBdihH7Fnko9KDI1qDsjpxne56hd2wDJfNJNeRrcw8ZcOxun_f7yb6-_hXquyeNOtDY43BiFlp8vpssU5Bu8tZk07yTnlBXqz7RLDj5VNWS9cQjtNxtuwSppJwYApKWVBYYNiDClFOz7OQkGvM9IPGeltRkXy-ukOj4KHRArwdgMUqb4Lq-jLSZ_3-wctyp2C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652029666</pqid></control><display><type>article</type><title>Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor</title><source>ACS Publications</source><source>PubMed Central</source><creator>Glaser, Jens ; Sedova, Ada ; Galanie, Stephanie ; Kneller, Daniel W ; Davidson, Russell B ; Maradzike, Elvis ; Del Galdo, Sara ; Labbé, Audrey ; Hsu, Darren J ; Agarwal, Rupesh ; Bykov, Dmytro ; Tharrington, Arnold ; Parks, Jerry M ; Smith, Dayle M. A ; Daidone, Isabella ; Coates, Leighton ; Kovalevsky, Andrey ; Smith, Jeremy C</creator><creatorcontrib>Glaser, Jens ; Sedova, Ada ; Galanie, Stephanie ; Kneller, Daniel W ; Davidson, Russell B ; Maradzike, Elvis ; Del Galdo, Sara ; Labbé, Audrey ; Hsu, Darren J ; Agarwal, Rupesh ; Bykov, Dmytro ; Tharrington, Arnold ; Parks, Jerry M ; Smith, Dayle M. A ; Daidone, Isabella ; Coates, Leighton ; Kovalevsky, Andrey ; Smith, Jeremy C ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 μM. Among these, four compounds with IC50 values around 1 μM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein–inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.</description><identifier>ISSN: 2575-9108</identifier><identifier>EISSN: 2575-9108</identifier><identifier>DOI: 10.1021/acsptsci.2c00026</identifier><identifier>PMID: 35434531</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; antiviral therapeutics ; drug discovery ; hit expansion ; main protease inhibitor ; SARS-CoV-2</subject><ispartof>ACS pharmacology & translational science, 2022-04, Vol.5 (4), p.255-265</ispartof><rights>2022 American Chemical Society</rights><rights>2022 American Chemical Society.</rights><rights>2022 American Chemical Society 2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-a98decb77496a72cb1d044c64051e5869f8d7c197c360c450edbfcb264f95d393</citedby><cites>FETCH-LOGICAL-a460t-a98decb77496a72cb1d044c64051e5869f8d7c197c360c450edbfcb264f95d393</cites><orcidid>0000-0001-5712-2568 ; 0000-0001-8970-8408 ; 0000-0003-1852-3849 ; 0000-0002-3103-9333 ; 0000-0002-2978-3227 ; 0000-0003-2342-049X ; 0000000189708408 ; 0000000254165789 ; 0000000231039333 ; 0000000344599142 ; 0000000228778768 ; 0000000229783227 ; 0000000157122568 ; 0000000318523849 ; 0000000323644039 ; 000000032342049X ; 0000000282333057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsptsci.2c00026$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsptsci.2c00026$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,2752,27053,27901,27902,53766,53768,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35434531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1864414$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Galanie, Stephanie</creatorcontrib><creatorcontrib>Kneller, Daniel W</creatorcontrib><creatorcontrib>Davidson, Russell B</creatorcontrib><creatorcontrib>Maradzike, Elvis</creatorcontrib><creatorcontrib>Del Galdo, Sara</creatorcontrib><creatorcontrib>Labbé, Audrey</creatorcontrib><creatorcontrib>Hsu, Darren J</creatorcontrib><creatorcontrib>Agarwal, Rupesh</creatorcontrib><creatorcontrib>Bykov, Dmytro</creatorcontrib><creatorcontrib>Tharrington, Arnold</creatorcontrib><creatorcontrib>Parks, Jerry M</creatorcontrib><creatorcontrib>Smith, Dayle M. A</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Coates, Leighton</creatorcontrib><creatorcontrib>Kovalevsky, Andrey</creatorcontrib><creatorcontrib>Smith, Jeremy C</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor</title><title>ACS pharmacology & translational science</title><addtitle>ACS Pharmacol. Transl. Sci</addtitle><description>Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 μM. Among these, four compounds with IC50 values around 1 μM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein–inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>antiviral therapeutics</subject><subject>drug discovery</subject><subject>hit expansion</subject><subject>main protease inhibitor</subject><subject>SARS-CoV-2</subject><issn>2575-9108</issn><issn>2575-9108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU9PFDEYxhuiAYLcOZkJJw8Ovu20nemFhGxQSFCMKNem807HLZlt17ZL9OZX8Cv6SexmF4IHTn2T_p7n_fMQckThhAKj7wymZU7oThgCAJM7ZJ-JVtSKQvfiSb1HDlO6WyMADVWwS_YawRsuGrpPZhcuV-c_l8YnF3wVxspUn4LHcG8m63N1c_blpp6F27-__7Dqo3G--hxDtibZ6tLPXe9yiK_Iy9FMyR5u3wPy7f3519lFfXX94XJ2dlUbLiHXRnWDxb5tuZKmZdjTAThHyUFQKzqpxm5okaoWGwnIBdihH7Fnko9KDI1qDsjpxne56hd2wDJfNJNeRrcw8ZcOxun_f7yb6-_hXquyeNOtDY43BiFlp8vpssU5Bu8tZk07yTnlBXqz7RLDj5VNWS9cQjtNxtuwSppJwYApKWVBYYNiDClFOz7OQkGvM9IPGeltRkXy-ukOj4KHRArwdgMUqb4Lq-jLSZ_3-wctyp2C</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Glaser, Jens</creator><creator>Sedova, Ada</creator><creator>Galanie, Stephanie</creator><creator>Kneller, Daniel W</creator><creator>Davidson, Russell B</creator><creator>Maradzike, Elvis</creator><creator>Del Galdo, Sara</creator><creator>Labbé, Audrey</creator><creator>Hsu, Darren J</creator><creator>Agarwal, Rupesh</creator><creator>Bykov, Dmytro</creator><creator>Tharrington, Arnold</creator><creator>Parks, Jerry M</creator><creator>Smith, Dayle M. A</creator><creator>Daidone, Isabella</creator><creator>Coates, Leighton</creator><creator>Kovalevsky, Andrey</creator><creator>Smith, Jeremy C</creator><general>American Chemical Society</general><general>ACS Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5712-2568</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000-0002-3103-9333</orcidid><orcidid>https://orcid.org/0000-0002-2978-3227</orcidid><orcidid>https://orcid.org/0000-0003-2342-049X</orcidid><orcidid>https://orcid.org/0000000189708408</orcidid><orcidid>https://orcid.org/0000000254165789</orcidid><orcidid>https://orcid.org/0000000231039333</orcidid><orcidid>https://orcid.org/0000000344599142</orcidid><orcidid>https://orcid.org/0000000228778768</orcidid><orcidid>https://orcid.org/0000000229783227</orcidid><orcidid>https://orcid.org/0000000157122568</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid><orcidid>https://orcid.org/000000032342049X</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid></search><sort><creationdate>20220408</creationdate><title>Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor</title><author>Glaser, Jens ; Sedova, Ada ; Galanie, Stephanie ; Kneller, Daniel W ; Davidson, Russell B ; Maradzike, Elvis ; Del Galdo, Sara ; Labbé, Audrey ; Hsu, Darren J ; Agarwal, Rupesh ; Bykov, Dmytro ; Tharrington, Arnold ; Parks, Jerry M ; Smith, Dayle M. A ; Daidone, Isabella ; Coates, Leighton ; Kovalevsky, Andrey ; Smith, Jeremy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-a98decb77496a72cb1d044c64051e5869f8d7c197c360c450edbfcb264f95d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>antiviral therapeutics</topic><topic>drug discovery</topic><topic>hit expansion</topic><topic>main protease inhibitor</topic><topic>SARS-CoV-2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaser, Jens</creatorcontrib><creatorcontrib>Sedova, Ada</creatorcontrib><creatorcontrib>Galanie, Stephanie</creatorcontrib><creatorcontrib>Kneller, Daniel W</creatorcontrib><creatorcontrib>Davidson, Russell B</creatorcontrib><creatorcontrib>Maradzike, Elvis</creatorcontrib><creatorcontrib>Del Galdo, Sara</creatorcontrib><creatorcontrib>Labbé, Audrey</creatorcontrib><creatorcontrib>Hsu, Darren J</creatorcontrib><creatorcontrib>Agarwal, Rupesh</creatorcontrib><creatorcontrib>Bykov, Dmytro</creatorcontrib><creatorcontrib>Tharrington, Arnold</creatorcontrib><creatorcontrib>Parks, Jerry M</creatorcontrib><creatorcontrib>Smith, Dayle M. A</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Coates, Leighton</creatorcontrib><creatorcontrib>Kovalevsky, Andrey</creatorcontrib><creatorcontrib>Smith, Jeremy C</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS pharmacology & translational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaser, Jens</au><au>Sedova, Ada</au><au>Galanie, Stephanie</au><au>Kneller, Daniel W</au><au>Davidson, Russell B</au><au>Maradzike, Elvis</au><au>Del Galdo, Sara</au><au>Labbé, Audrey</au><au>Hsu, Darren J</au><au>Agarwal, Rupesh</au><au>Bykov, Dmytro</au><au>Tharrington, Arnold</au><au>Parks, Jerry M</au><au>Smith, Dayle M. A</au><au>Daidone, Isabella</au><au>Coates, Leighton</au><au>Kovalevsky, Andrey</au><au>Smith, Jeremy C</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor</atitle><jtitle>ACS pharmacology & translational science</jtitle><addtitle>ACS Pharmacol. Transl. Sci</addtitle><date>2022-04-08</date><risdate>2022</risdate><volume>5</volume><issue>4</issue><spage>255</spage><epage>265</epage><pages>255-265</pages><issn>2575-9108</issn><eissn>2575-9108</eissn><abstract>Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 μM. Among these, four compounds with IC50 values around 1 μM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein–inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35434531</pmid><doi>10.1021/acsptsci.2c00026</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5712-2568</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0003-1852-3849</orcidid><orcidid>https://orcid.org/0000-0002-3103-9333</orcidid><orcidid>https://orcid.org/0000-0002-2978-3227</orcidid><orcidid>https://orcid.org/0000-0003-2342-049X</orcidid><orcidid>https://orcid.org/0000000189708408</orcidid><orcidid>https://orcid.org/0000000254165789</orcidid><orcidid>https://orcid.org/0000000231039333</orcidid><orcidid>https://orcid.org/0000000344599142</orcidid><orcidid>https://orcid.org/0000000228778768</orcidid><orcidid>https://orcid.org/0000000229783227</orcidid><orcidid>https://orcid.org/0000000157122568</orcidid><orcidid>https://orcid.org/0000000318523849</orcidid><orcidid>https://orcid.org/0000000323644039</orcidid><orcidid>https://orcid.org/000000032342049X</orcidid><orcidid>https://orcid.org/0000000282333057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2575-9108 |
ispartof | ACS pharmacology & translational science, 2022-04, Vol.5 (4), p.255-265 |
issn | 2575-9108 2575-9108 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9003389 |
source | ACS Publications; PubMed Central |
subjects | 60 APPLIED LIFE SCIENCES antiviral therapeutics drug discovery hit expansion main protease inhibitor SARS-CoV-2 |
title | Hit Expansion of a Noncovalent SARS-CoV‑2 Main Protease Inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hit%20Expansion%20of%20a%20Noncovalent%20SARS-CoV%E2%80%912%20Main%20Protease%20Inhibitor&rft.jtitle=ACS%20pharmacology%20&%20translational%20science&rft.au=Glaser,%20Jens&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-04-08&rft.volume=5&rft.issue=4&rft.spage=255&rft.epage=265&rft.pages=255-265&rft.issn=2575-9108&rft.eissn=2575-9108&rft_id=info:doi/10.1021/acsptsci.2c00026&rft_dat=%3Cproquest_pubme%3E2652029666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652029666&rft_id=info:pmid/35434531&rfr_iscdi=true |