Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites

This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-04, Vol.15 (7), p.2618
Hauptverfasser: Wang, Jingyu, Marashizadeh, Parisa, Weng, Binbin, Larson, Preston, Altan, M Cengiz, Liu, Yingtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2618
container_title Materials
container_volume 15
creator Wang, Jingyu
Marashizadeh, Parisa
Weng, Binbin
Larson, Preston
Altan, M Cengiz
Liu, Yingtao
description This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.
doi_str_mv 10.3390/ma15072618
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649587522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-26fb728ac5a59d75a7e82df3251ca1b35ba63f374bc3f410d0ddc7dd1bc941223</originalsourceid><addsrcrecordid>eNpdkUtLJDEUhYMoKo4bf4AUuBGxxjyrKpuBpmnHAR_gY-Mm3EpS3ZGqpE2qFf31U7Y96phNwsnHuY-D0B7BPxmT-KQDInBJC1KtoW0iZZETyfn6l_cW2k3pAQ-HMVJRuYm2mOC4lFxuo-7mxfczm1w6zsYziKB7G90r9C744wy8yS6Csa3z0yw02ah1U29Ndu-vskvw4dlFm0_8DLwe1DHEOvj81NU25tfW-SbEpR66eUiut-kH2migTXZ3de-gu9PJ7fgsP7_6_Wc8Os81x0Wf06KpS1qBFiCkKQWUtqKmYVQQDaRmooaCNazktWYNJ9hgY3RpDKm15IRStoN-vfvOF3Vnjba-j9CqeXQdxBcVwKn_f7ybqWl4UnLYEmXFYHC4MojhcWFTrzqXtG1b8DYskqIFl6IqxbLWwTf0ISyiH8ZbUlgMixYDdfRO6RhSirb5aIZg9Rak-gxygPe_tv-B_ouN_QUAi5m6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649057945</pqid></control><display><type>article</type><title>Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jingyu ; Marashizadeh, Parisa ; Weng, Binbin ; Larson, Preston ; Altan, M Cengiz ; Liu, Yingtao</creator><creatorcontrib>Wang, Jingyu ; Marashizadeh, Parisa ; Weng, Binbin ; Larson, Preston ; Altan, M Cengiz ; Liu, Yingtao</creatorcontrib><description>This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15072618</identifier><identifier>PMID: 35407949</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Atomic layer epitaxy ; Carbon fibers ; Chemical composition ; Chemical vapor deposition ; Continuous fibers ; Damage assessment ; Fiber composites ; Finite element method ; Graphite ; Homogenization ; Hybrid composites ; Interfaces ; Interfacial properties ; Interfacial shear strength ; Investigations ; Low temperature ; Mathematical models ; Mechanical properties ; Methods ; Modelling ; Nanoparticles ; Nanowires ; Nitrates ; Polymers ; Shear strength ; Synthesis ; Tensile strength ; Zinc oxide ; Zinc oxides</subject><ispartof>Materials, 2022-04, Vol.15 (7), p.2618</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-26fb728ac5a59d75a7e82df3251ca1b35ba63f374bc3f410d0ddc7dd1bc941223</citedby><cites>FETCH-LOGICAL-c406t-26fb728ac5a59d75a7e82df3251ca1b35ba63f374bc3f410d0ddc7dd1bc941223</cites><orcidid>0000-0002-5706-5345 ; 0000-0002-6232-9704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000236/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000236/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35407949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Marashizadeh, Parisa</creatorcontrib><creatorcontrib>Weng, Binbin</creatorcontrib><creatorcontrib>Larson, Preston</creatorcontrib><creatorcontrib>Altan, M Cengiz</creatorcontrib><creatorcontrib>Liu, Yingtao</creatorcontrib><title>Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.</description><subject>Atomic layer epitaxy</subject><subject>Carbon fibers</subject><subject>Chemical composition</subject><subject>Chemical vapor deposition</subject><subject>Continuous fibers</subject><subject>Damage assessment</subject><subject>Fiber composites</subject><subject>Finite element method</subject><subject>Graphite</subject><subject>Homogenization</subject><subject>Hybrid composites</subject><subject>Interfaces</subject><subject>Interfacial properties</subject><subject>Interfacial shear strength</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Modelling</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Nitrates</subject><subject>Polymers</subject><subject>Shear strength</subject><subject>Synthesis</subject><subject>Tensile strength</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLJDEUhYMoKo4bf4AUuBGxxjyrKpuBpmnHAR_gY-Mm3EpS3ZGqpE2qFf31U7Y96phNwsnHuY-D0B7BPxmT-KQDInBJC1KtoW0iZZETyfn6l_cW2k3pAQ-HMVJRuYm2mOC4lFxuo-7mxfczm1w6zsYziKB7G90r9C744wy8yS6Csa3z0yw02ah1U29Ndu-vskvw4dlFm0_8DLwe1DHEOvj81NU25tfW-SbEpR66eUiut-kH2migTXZ3de-gu9PJ7fgsP7_6_Wc8Os81x0Wf06KpS1qBFiCkKQWUtqKmYVQQDaRmooaCNazktWYNJ9hgY3RpDKm15IRStoN-vfvOF3Vnjba-j9CqeXQdxBcVwKn_f7ybqWl4UnLYEmXFYHC4MojhcWFTrzqXtG1b8DYskqIFl6IqxbLWwTf0ISyiH8ZbUlgMixYDdfRO6RhSirb5aIZg9Rak-gxygPe_tv-B_ouN_QUAi5m6</recordid><startdate>20220402</startdate><enddate>20220402</enddate><creator>Wang, Jingyu</creator><creator>Marashizadeh, Parisa</creator><creator>Weng, Binbin</creator><creator>Larson, Preston</creator><creator>Altan, M Cengiz</creator><creator>Liu, Yingtao</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5706-5345</orcidid><orcidid>https://orcid.org/0000-0002-6232-9704</orcidid></search><sort><creationdate>20220402</creationdate><title>Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites</title><author>Wang, Jingyu ; Marashizadeh, Parisa ; Weng, Binbin ; Larson, Preston ; Altan, M Cengiz ; Liu, Yingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-26fb728ac5a59d75a7e82df3251ca1b35ba63f374bc3f410d0ddc7dd1bc941223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic layer epitaxy</topic><topic>Carbon fibers</topic><topic>Chemical composition</topic><topic>Chemical vapor deposition</topic><topic>Continuous fibers</topic><topic>Damage assessment</topic><topic>Fiber composites</topic><topic>Finite element method</topic><topic>Graphite</topic><topic>Homogenization</topic><topic>Hybrid composites</topic><topic>Interfaces</topic><topic>Interfacial properties</topic><topic>Interfacial shear strength</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Modelling</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Nitrates</topic><topic>Polymers</topic><topic>Shear strength</topic><topic>Synthesis</topic><topic>Tensile strength</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Marashizadeh, Parisa</creatorcontrib><creatorcontrib>Weng, Binbin</creatorcontrib><creatorcontrib>Larson, Preston</creatorcontrib><creatorcontrib>Altan, M Cengiz</creatorcontrib><creatorcontrib>Liu, Yingtao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingyu</au><au>Marashizadeh, Parisa</au><au>Weng, Binbin</au><au>Larson, Preston</au><au>Altan, M Cengiz</au><au>Liu, Yingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-04-02</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2618</spage><pages>2618-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents the synthesis, characterization, and multiscale modeling of hybrid composites with enhanced interfacial properties consisting of aligned zinc oxide (ZnO) nanowires and continuous carbon fibers. The atomic layer deposition method was employed to uniformly synthesize nanoscale ZnO seeds on carbon fibers. Vertically aligned ZnO nanowires were grown from the deposited nanoscale seeds using the low-temperature hydrothermal method. Morphology and chemical compositions of ZnO nanowires were characterized to evaluate the quality of synthesized ZnO nanowires in hybrid fiber-reinforced composites. Single fiber fragmentation tests reveal that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. Additionally, a multiscale modeling framework was developed to investigate the IFSS of hybrid composites with radially aligned ZnO nanowires. The cohesive zone model (CZM) was implemented to model the interface between fiber and matrix. The damage behavior of fiber was simulated using the ABAQUS user subroutine to define a material's mechanical behavior (UMAT). Both experimental and analytical results indicate that the hierarchical carbon fibers enhanced by aligned ZnO nanowires are effective in improving the key mechanical properties of hybrid fiber-reinforced composites.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35407949</pmid><doi>10.3390/ma15072618</doi><orcidid>https://orcid.org/0000-0002-5706-5345</orcidid><orcidid>https://orcid.org/0000-0002-6232-9704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-04, Vol.15 (7), p.2618
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000236
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Atomic layer epitaxy
Carbon fibers
Chemical composition
Chemical vapor deposition
Continuous fibers
Damage assessment
Fiber composites
Finite element method
Graphite
Homogenization
Hybrid composites
Interfaces
Interfacial properties
Interfacial shear strength
Investigations
Low temperature
Mathematical models
Mechanical properties
Methods
Modelling
Nanoparticles
Nanowires
Nitrates
Polymers
Shear strength
Synthesis
Tensile strength
Zinc oxide
Zinc oxides
title Synthesis, Characterization, and Modeling of Aligned ZnO Nanowire-Enhanced Carbon-Fiber-Reinforced Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Characterization,%20and%20Modeling%20of%20Aligned%20ZnO%20Nanowire-Enhanced%20Carbon-Fiber-Reinforced%20Composites&rft.jtitle=Materials&rft.au=Wang,%20Jingyu&rft.date=2022-04-02&rft.volume=15&rft.issue=7&rft.spage=2618&rft.pages=2618-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15072618&rft_dat=%3Cproquest_pubme%3E2649587522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649057945&rft_id=info:pmid/35407949&rfr_iscdi=true