Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles
Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base mat...
Gespeichert in:
Veröffentlicht in: | Materials 2022-03, Vol.15 (7), p.2556 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 2556 |
container_title | Materials |
container_volume | 15 |
creator | Rashid, Rusila Zamani Abdul Yunus, Nurul Azhani Mazlan, Saiful Amri Johari, Norhasnidawani Aziz, Siti Aishah Abdul Nordin, Nur Azmah Khairi, Muntaz Hana Ahmad Johari, Mohd Aidy Faizal |
description | Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications. |
doi_str_mv | 10.3390/ma15072556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649587393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-761c7abcd16d686b10e197039352ee7b4f16f2ead356ae6cb390f729c5e924343</originalsourceid><addsrcrecordid>eNpdkc1u1TAQhS0EolXbDQ-ALLFBSClx7NjxBgnaC0XqhQratTVxJvemcuzUTpB4AN4b94dywRt7NJ-Pzswh5AUrjznX5dsRWF2qqq7lE7LPtJYF00I83XnvkaOUrst8OGdNpZ-TPV6LUjWN3ie_LnGcMMK8RKSnOKHv0M80eLpGuwU_WHAUfEe_bTG4sLmrL2LIf-YBEw09XV2crosPkLCja9h4nEPcYVcO0hxGjIlepcFv6PfB5Qb9Aj5MkEWsw3RInvXgEh493Afk6uPq8uSsOP_66fPJ-_PCci7nQklmFbS2Y7KTjWxZiUyrkmteV4iqFT2TfYXQ8VoCStvmBfWq0rZGXQku-AF5d687Le2Inc2jRnBmisMI8acJMJh_O37Ymk34YXTeHlNVFnj9IBDDzYJpNuOQLDoHHsOSTCWFrhuVHWX01X_odViiz-PdUaVohNaZenNP2RhSitg_mmGluQ3Y_A04wy937T-if-LkvwE0V6Kp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649048499</pqid></control><display><type>article</type><title>Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rashid, Rusila Zamani Abdul ; Yunus, Nurul Azhani ; Mazlan, Saiful Amri ; Johari, Norhasnidawani ; Aziz, Siti Aishah Abdul ; Nordin, Nur Azmah ; Khairi, Muntaz Hana Ahmad ; Johari, Mohd Aidy Faizal</creator><creatorcontrib>Rashid, Rusila Zamani Abdul ; Yunus, Nurul Azhani ; Mazlan, Saiful Amri ; Johari, Norhasnidawani ; Aziz, Siti Aishah Abdul ; Nordin, Nur Azmah ; Khairi, Muntaz Hana Ahmad ; Johari, Mohd Aidy Faizal</creatorcontrib><description>Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15072556</identifier><identifier>PMID: 35407889</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbonyls ; Composite materials ; Differential scanning calorimetry ; Elastomers ; Emission analysis ; Fillers ; Magnetic fields ; Magnetic properties ; Mechanical properties ; Nanoparticles ; Polymer matrix composites ; Polymers ; Propylene ; Protective coatings ; Rheological properties ; Rheology ; Rubber ; Silicon dioxide ; Temperature ; Temperature dependence ; Tensile properties ; Tensile strength ; Thermal stability ; Zinc oxides</subject><ispartof>Materials, 2022-03, Vol.15 (7), p.2556</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-761c7abcd16d686b10e197039352ee7b4f16f2ead356ae6cb390f729c5e924343</citedby><cites>FETCH-LOGICAL-c336t-761c7abcd16d686b10e197039352ee7b4f16f2ead356ae6cb390f729c5e924343</cites><orcidid>0000-0002-0096-8877 ; 0000-0003-1709-2215 ; 0000-0002-4889-4512 ; 0000-0003-1564-7643 ; 0000-0003-2417-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000172/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000172/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35407889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Rusila Zamani Abdul</creatorcontrib><creatorcontrib>Yunus, Nurul Azhani</creatorcontrib><creatorcontrib>Mazlan, Saiful Amri</creatorcontrib><creatorcontrib>Johari, Norhasnidawani</creatorcontrib><creatorcontrib>Aziz, Siti Aishah Abdul</creatorcontrib><creatorcontrib>Nordin, Nur Azmah</creatorcontrib><creatorcontrib>Khairi, Muntaz Hana Ahmad</creatorcontrib><creatorcontrib>Johari, Mohd Aidy Faizal</creatorcontrib><title>Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.</description><subject>Carbonyls</subject><subject>Composite materials</subject><subject>Differential scanning calorimetry</subject><subject>Elastomers</subject><subject>Emission analysis</subject><subject>Fillers</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Propylene</subject><subject>Protective coatings</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rubber</subject><subject>Silicon dioxide</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Zinc oxides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1u1TAQhS0EolXbDQ-ALLFBSClx7NjxBgnaC0XqhQratTVxJvemcuzUTpB4AN4b94dywRt7NJ-Pzswh5AUrjznX5dsRWF2qqq7lE7LPtJYF00I83XnvkaOUrst8OGdNpZ-TPV6LUjWN3ie_LnGcMMK8RKSnOKHv0M80eLpGuwU_WHAUfEe_bTG4sLmrL2LIf-YBEw09XV2crosPkLCja9h4nEPcYVcO0hxGjIlepcFv6PfB5Qb9Aj5MkEWsw3RInvXgEh493Afk6uPq8uSsOP_66fPJ-_PCci7nQklmFbS2Y7KTjWxZiUyrkmteV4iqFT2TfYXQ8VoCStvmBfWq0rZGXQku-AF5d687Le2Inc2jRnBmisMI8acJMJh_O37Ymk34YXTeHlNVFnj9IBDDzYJpNuOQLDoHHsOSTCWFrhuVHWX01X_odViiz-PdUaVohNaZenNP2RhSitg_mmGluQ3Y_A04wy937T-if-LkvwE0V6Kp</recordid><startdate>20220331</startdate><enddate>20220331</enddate><creator>Rashid, Rusila Zamani Abdul</creator><creator>Yunus, Nurul Azhani</creator><creator>Mazlan, Saiful Amri</creator><creator>Johari, Norhasnidawani</creator><creator>Aziz, Siti Aishah Abdul</creator><creator>Nordin, Nur Azmah</creator><creator>Khairi, Muntaz Hana Ahmad</creator><creator>Johari, Mohd Aidy Faizal</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0096-8877</orcidid><orcidid>https://orcid.org/0000-0003-1709-2215</orcidid><orcidid>https://orcid.org/0000-0002-4889-4512</orcidid><orcidid>https://orcid.org/0000-0003-1564-7643</orcidid><orcidid>https://orcid.org/0000-0003-2417-6089</orcidid></search><sort><creationdate>20220331</creationdate><title>Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles</title><author>Rashid, Rusila Zamani Abdul ; Yunus, Nurul Azhani ; Mazlan, Saiful Amri ; Johari, Norhasnidawani ; Aziz, Siti Aishah Abdul ; Nordin, Nur Azmah ; Khairi, Muntaz Hana Ahmad ; Johari, Mohd Aidy Faizal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-761c7abcd16d686b10e197039352ee7b4f16f2ead356ae6cb390f729c5e924343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbonyls</topic><topic>Composite materials</topic><topic>Differential scanning calorimetry</topic><topic>Elastomers</topic><topic>Emission analysis</topic><topic>Fillers</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Propylene</topic><topic>Protective coatings</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rubber</topic><topic>Silicon dioxide</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Rusila Zamani Abdul</creatorcontrib><creatorcontrib>Yunus, Nurul Azhani</creatorcontrib><creatorcontrib>Mazlan, Saiful Amri</creatorcontrib><creatorcontrib>Johari, Norhasnidawani</creatorcontrib><creatorcontrib>Aziz, Siti Aishah Abdul</creatorcontrib><creatorcontrib>Nordin, Nur Azmah</creatorcontrib><creatorcontrib>Khairi, Muntaz Hana Ahmad</creatorcontrib><creatorcontrib>Johari, Mohd Aidy Faizal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Rusila Zamani Abdul</au><au>Yunus, Nurul Azhani</au><au>Mazlan, Saiful Amri</au><au>Johari, Norhasnidawani</au><au>Aziz, Siti Aishah Abdul</au><au>Nordin, Nur Azmah</au><au>Khairi, Muntaz Hana Ahmad</au><au>Johari, Mohd Aidy Faizal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-31</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2556</spage><pages>2556-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35407889</pmid><doi>10.3390/ma15072556</doi><orcidid>https://orcid.org/0000-0002-0096-8877</orcidid><orcidid>https://orcid.org/0000-0003-1709-2215</orcidid><orcidid>https://orcid.org/0000-0002-4889-4512</orcidid><orcidid>https://orcid.org/0000-0003-1564-7643</orcidid><orcidid>https://orcid.org/0000-0003-2417-6089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (7), p.2556 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000172 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Carbonyls Composite materials Differential scanning calorimetry Elastomers Emission analysis Fillers Magnetic fields Magnetic properties Mechanical properties Nanoparticles Polymer matrix composites Polymers Propylene Protective coatings Rheological properties Rheology Rubber Silicon dioxide Temperature Temperature dependence Tensile properties Tensile strength Thermal stability Zinc oxides |
title | Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependent%20on%20Mechanical%20and%20Rheological%20Properties%20of%20EPDM-Based%20Magnetorheological%20Elastomers%20Using%20Silica%20Nanoparticles&rft.jtitle=Materials&rft.au=Rashid,%20Rusila%20Zamani%20Abdul&rft.date=2022-03-31&rft.volume=15&rft.issue=7&rft.spage=2556&rft.pages=2556-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15072556&rft_dat=%3Cproquest_pubme%3E2649587393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649048499&rft_id=info:pmid/35407889&rfr_iscdi=true |