Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties

Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-03, Vol.15 (7), p.2434
Hauptverfasser: Murgas, Brayan, Flipon, Baptiste, Bozzolo, Nathalie, Bernacki, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2434
container_title Materials
container_volume 15
creator Murgas, Brayan
Flipon, Baptiste
Bozzolo, Nathalie
Bernacki, Marc
description Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility is heterogeneously defined as a function of the GB disorientation. On the other hand, GB energy is considered as heterogeneous or anisotropic, which are, respectively, defined as a function of the disorientation and both the GB misorientation and the GB inclination. In terms of mean grain size value and grain size distribution (GSD), both formulations provide similar responses. However, the anisotropic formulation better respects the experimental disorientation distribution function (DDF) and predicts more realistic grain morphologies. It was also found that the heterogeneous GB mobility described with a sigmoidal function only affects the DDF and the morphology of grains. Thus, a slower evolution of twin boundaries (TBs) is perceived.
doi_str_mv 10.3390/ma15072434
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649098771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-fae6c56b510593c4302e166049637076762e76d1e9939891d8250af9f4ea3a1c3</originalsourceid><addsrcrecordid>eNpdkk1P3DAQhq2KqiDKpT8AWeJCK6X42_EFaaEFKqVqVcrZMslk1yiJFzvZCn59vSwFig_2q_Hj1-PxIPSBks-cG3LUOyqJZoKLN2iHGqMKaoTYeqG30V5KNyQPzmnJzDu0zaUgWiu5g-4rWEFXXMKIv4cGOj_McWjxeXR-yHP4My5wVpyqCl-OOdhBSlkBdHgaGoj4i29biDCMeJbS1C9HH4aEf8HcxWbttrE6CZl28Q7_jGEJcfSQ3qO3resS7D2uu-jq7Ovv04ui-nH-7XRWFbUQZCxaB6qW6lpSIg2vBScMqFJEGMU10UorBlo1FIzhpjS0KZkkrjWtAMcdrfkuOt74LqfrHpo6pxpdZ5fR9zkhG5y3_-8MfmHnYWVNLhmVPBt83BgsXh27mFV2HSNcMSoVX9HMHj5eFsPtBGm0vU81dJ0bIEzJMiWMLDUzLKMHr9CbMMUhl-KBIqbUem34aUPVMaQUoX3KgBK77gD73AEZ3n_51Cf033_zv52dqhc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649098771</pqid></control><display><type>article</type><title>Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Murgas, Brayan ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</creator><creatorcontrib>Murgas, Brayan ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</creatorcontrib><description>Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility is heterogeneously defined as a function of the GB disorientation. On the other hand, GB energy is considered as heterogeneous or anisotropic, which are, respectively, defined as a function of the disorientation and both the GB misorientation and the GB inclination. In terms of mean grain size value and grain size distribution (GSD), both formulations provide similar responses. However, the anisotropic formulation better respects the experimental disorientation distribution function (DDF) and predicts more realistic grain morphologies. It was also found that the heterogeneous GB mobility described with a sigmoidal function only affects the DDF and the morphology of grains. Thus, a slower evolution of twin boundaries (TBs) is perceived.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15072434</identifier><identifier>PMID: 35407765</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropy ; Austenitic stainless steels ; Computer Science ; Condensed Matter ; Disorientation ; Distribution functions ; Energy ; Engineering Sciences ; Grain boundaries ; Grain growth ; Grain size ; Grain size distribution ; Histograms ; Interfaces ; Materials ; Materials Science ; Microstructure ; Misalignment ; Modeling and Simulation ; Modelling ; Morphology ; Physics ; Stainless steel ; Twin boundaries ; Velocity</subject><ispartof>Materials, 2022-03, Vol.15 (7), p.2434</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-fae6c56b510593c4302e166049637076762e76d1e9939891d8250af9f4ea3a1c3</citedby><cites>FETCH-LOGICAL-c440t-fae6c56b510593c4302e166049637076762e76d1e9939891d8250af9f4ea3a1c3</cites><orcidid>0000-0002-6513-7505 ; 0000-0001-6804-1974 ; 0000-0002-8963-977X ; 0000-0002-6677-2850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000153/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000153/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35407765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03621563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murgas, Brayan</creatorcontrib><creatorcontrib>Flipon, Baptiste</creatorcontrib><creatorcontrib>Bozzolo, Nathalie</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><title>Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility is heterogeneously defined as a function of the GB disorientation. On the other hand, GB energy is considered as heterogeneous or anisotropic, which are, respectively, defined as a function of the disorientation and both the GB misorientation and the GB inclination. In terms of mean grain size value and grain size distribution (GSD), both formulations provide similar responses. However, the anisotropic formulation better respects the experimental disorientation distribution function (DDF) and predicts more realistic grain morphologies. It was also found that the heterogeneous GB mobility described with a sigmoidal function only affects the DDF and the morphology of grains. Thus, a slower evolution of twin boundaries (TBs) is perceived.</description><subject>Anisotropy</subject><subject>Austenitic stainless steels</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Disorientation</subject><subject>Distribution functions</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Histograms</subject><subject>Interfaces</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Misalignment</subject><subject>Modeling and Simulation</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Physics</subject><subject>Stainless steel</subject><subject>Twin boundaries</subject><subject>Velocity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1P3DAQhq2KqiDKpT8AWeJCK6X42_EFaaEFKqVqVcrZMslk1yiJFzvZCn59vSwFig_2q_Hj1-PxIPSBks-cG3LUOyqJZoKLN2iHGqMKaoTYeqG30V5KNyQPzmnJzDu0zaUgWiu5g-4rWEFXXMKIv4cGOj_McWjxeXR-yHP4My5wVpyqCl-OOdhBSlkBdHgaGoj4i29biDCMeJbS1C9HH4aEf8HcxWbttrE6CZl28Q7_jGEJcfSQ3qO3resS7D2uu-jq7Ovv04ui-nH-7XRWFbUQZCxaB6qW6lpSIg2vBScMqFJEGMU10UorBlo1FIzhpjS0KZkkrjWtAMcdrfkuOt74LqfrHpo6pxpdZ5fR9zkhG5y3_-8MfmHnYWVNLhmVPBt83BgsXh27mFV2HSNcMSoVX9HMHj5eFsPtBGm0vU81dJ0bIEzJMiWMLDUzLKMHr9CbMMUhl-KBIqbUem34aUPVMaQUoX3KgBK77gD73AEZ3n_51Cf033_zv52dqhc</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Murgas, Brayan</creator><creator>Flipon, Baptiste</creator><creator>Bozzolo, Nathalie</creator><creator>Bernacki, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6513-7505</orcidid><orcidid>https://orcid.org/0000-0001-6804-1974</orcidid><orcidid>https://orcid.org/0000-0002-8963-977X</orcidid><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid></search><sort><creationdate>20220325</creationdate><title>Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties</title><author>Murgas, Brayan ; Flipon, Baptiste ; Bozzolo, Nathalie ; Bernacki, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-fae6c56b510593c4302e166049637076762e76d1e9939891d8250af9f4ea3a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Austenitic stainless steels</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Disorientation</topic><topic>Distribution functions</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Histograms</topic><topic>Interfaces</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Misalignment</topic><topic>Modeling and Simulation</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Physics</topic><topic>Stainless steel</topic><topic>Twin boundaries</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murgas, Brayan</creatorcontrib><creatorcontrib>Flipon, Baptiste</creatorcontrib><creatorcontrib>Bozzolo, Nathalie</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murgas, Brayan</au><au>Flipon, Baptiste</au><au>Bozzolo, Nathalie</au><au>Bernacki, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-25</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2434</spage><pages>2434-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility is heterogeneously defined as a function of the GB disorientation. On the other hand, GB energy is considered as heterogeneous or anisotropic, which are, respectively, defined as a function of the disorientation and both the GB misorientation and the GB inclination. In terms of mean grain size value and grain size distribution (GSD), both formulations provide similar responses. However, the anisotropic formulation better respects the experimental disorientation distribution function (DDF) and predicts more realistic grain morphologies. It was also found that the heterogeneous GB mobility described with a sigmoidal function only affects the DDF and the morphology of grains. Thus, a slower evolution of twin boundaries (TBs) is perceived.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35407765</pmid><doi>10.3390/ma15072434</doi><orcidid>https://orcid.org/0000-0002-6513-7505</orcidid><orcidid>https://orcid.org/0000-0001-6804-1974</orcidid><orcidid>https://orcid.org/0000-0002-8963-977X</orcidid><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-03, Vol.15 (7), p.2434
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9000153
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anisotropy
Austenitic stainless steels
Computer Science
Condensed Matter
Disorientation
Distribution functions
Energy
Engineering Sciences
Grain boundaries
Grain growth
Grain size
Grain size distribution
Histograms
Interfaces
Materials
Materials Science
Microstructure
Misalignment
Modeling and Simulation
Modelling
Morphology
Physics
Stainless steel
Twin boundaries
Velocity
title Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level-Set%20Modeling%20of%20Grain%20Growth%20in%20316L%20Stainless%20Steel%20under%20Different%20Assumptions%20Regarding%20Grain%20Boundary%20Properties&rft.jtitle=Materials&rft.au=Murgas,%20Brayan&rft.date=2022-03-25&rft.volume=15&rft.issue=7&rft.spage=2434&rft.pages=2434-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15072434&rft_dat=%3Cproquest_pubme%3E2649098771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649098771&rft_id=info:pmid/35407765&rfr_iscdi=true