Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation
In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditiona...
Gespeichert in:
Veröffentlicht in: | Materials 2022-03, Vol.15 (7), p.2541 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 2541 |
container_title | Materials |
container_volume | 15 |
creator | Behura, Aruna Kumar Mohanty, Chinmaya Prasad Singh, Manas Ranjan Kumar, Ashwini Linul, Emanoil Rajak, Dipen Kumar |
description | In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75-80%, 74-78%, and 63-71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s. |
doi_str_mv | 10.3390/ma15072541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8999575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649587301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-bfe2c9504db579f4d455ca51215b678b886c796f36681e1b3437eebd760a19743</originalsourceid><addsrcrecordid>eNpdkUtLxTAQhYMoKurGHyABNyJcTZpX40K4iC8QFB8bNyFtp_dG2kSTVvDfG7m-ZzMD83E4MwehbUoOGNPksLdUEFUITpfQOtVaTqjmfPnXvIa2UnoiuRijZaFX0RoTnKhS8XX0eAOxDbG3vgY89bZ7Sy7h0OL7eQTAd64BfBvG2Rw8NPgudDbiqYv4AuwA8QhP8U2EzvXO2_iGL_0rpMHN7OCC30Qrre0SbH32DfRwdnp_cjG5uj6_PJleTWpO5DCpWihqLQhvKqF0yxsuRG0FLaiopCqrspS10rJlUpYUaMU4UwBVoySxVCvONtDxQvd5rHpoavBDtJ15jq7PnkywzvzdeDc3s_BqSq21UCIL7H0KxPAy5gNM71INXWc9hDGZQnItSsUIzejuP_QpjDG_bUERkT3qTO0vqDqGlCK032YoMR-pmZ_UMrzz2_43-pURewcQFZGa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649056819</pqid></control><display><type>article</type><title>Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central(OpenAccess)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Behura, Aruna Kumar ; Mohanty, Chinmaya Prasad ; Singh, Manas Ranjan ; Kumar, Ashwini ; Linul, Emanoil ; Rajak, Dipen Kumar</creator><creatorcontrib>Behura, Aruna Kumar ; Mohanty, Chinmaya Prasad ; Singh, Manas Ranjan ; Kumar, Ashwini ; Linul, Emanoil ; Rajak, Dipen Kumar</creatorcontrib><description>In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75-80%, 74-78%, and 63-71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15072541</identifier><identifier>PMID: 35407874</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air temperature ; Alternative energy sources ; Cookers ; Efficiency ; Flat plates ; Friction ; Green buildings ; Heat transfer ; Heaters ; Mass flow rate ; Mathematical models ; Optimization ; Optimization techniques ; Photovoltaic cells ; Roughness ; Solar energy</subject><ispartof>Materials, 2022-03, Vol.15 (7), p.2541</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-bfe2c9504db579f4d455ca51215b678b886c796f36681e1b3437eebd760a19743</citedby><cites>FETCH-LOGICAL-c406t-bfe2c9504db579f4d455ca51215b678b886c796f36681e1b3437eebd760a19743</cites><orcidid>0000-0003-3120-0294 ; 0000-0003-4469-2654 ; 0000-0002-4984-2669 ; 0000-0001-9090-8917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999575/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999575/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35407874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behura, Aruna Kumar</creatorcontrib><creatorcontrib>Mohanty, Chinmaya Prasad</creatorcontrib><creatorcontrib>Singh, Manas Ranjan</creatorcontrib><creatorcontrib>Kumar, Ashwini</creatorcontrib><creatorcontrib>Linul, Emanoil</creatorcontrib><creatorcontrib>Rajak, Dipen Kumar</creatorcontrib><title>Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75-80%, 74-78%, and 63-71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s.</description><subject>Air temperature</subject><subject>Alternative energy sources</subject><subject>Cookers</subject><subject>Efficiency</subject><subject>Flat plates</subject><subject>Friction</subject><subject>Green buildings</subject><subject>Heat transfer</subject><subject>Heaters</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Photovoltaic cells</subject><subject>Roughness</subject><subject>Solar energy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLxTAQhYMoKurGHyABNyJcTZpX40K4iC8QFB8bNyFtp_dG2kSTVvDfG7m-ZzMD83E4MwehbUoOGNPksLdUEFUITpfQOtVaTqjmfPnXvIa2UnoiuRijZaFX0RoTnKhS8XX0eAOxDbG3vgY89bZ7Sy7h0OL7eQTAd64BfBvG2Rw8NPgudDbiqYv4AuwA8QhP8U2EzvXO2_iGL_0rpMHN7OCC30Qrre0SbH32DfRwdnp_cjG5uj6_PJleTWpO5DCpWihqLQhvKqF0yxsuRG0FLaiopCqrspS10rJlUpYUaMU4UwBVoySxVCvONtDxQvd5rHpoavBDtJ15jq7PnkywzvzdeDc3s_BqSq21UCIL7H0KxPAy5gNM71INXWc9hDGZQnItSsUIzejuP_QpjDG_bUERkT3qTO0vqDqGlCK032YoMR-pmZ_UMrzz2_43-pURewcQFZGa</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Behura, Aruna Kumar</creator><creator>Mohanty, Chinmaya Prasad</creator><creator>Singh, Manas Ranjan</creator><creator>Kumar, Ashwini</creator><creator>Linul, Emanoil</creator><creator>Rajak, Dipen Kumar</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3120-0294</orcidid><orcidid>https://orcid.org/0000-0003-4469-2654</orcidid><orcidid>https://orcid.org/0000-0002-4984-2669</orcidid><orcidid>https://orcid.org/0000-0001-9090-8917</orcidid></search><sort><creationdate>20220330</creationdate><title>Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation</title><author>Behura, Aruna Kumar ; Mohanty, Chinmaya Prasad ; Singh, Manas Ranjan ; Kumar, Ashwini ; Linul, Emanoil ; Rajak, Dipen Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-bfe2c9504db579f4d455ca51215b678b886c796f36681e1b3437eebd760a19743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Alternative energy sources</topic><topic>Cookers</topic><topic>Efficiency</topic><topic>Flat plates</topic><topic>Friction</topic><topic>Green buildings</topic><topic>Heat transfer</topic><topic>Heaters</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Photovoltaic cells</topic><topic>Roughness</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behura, Aruna Kumar</creatorcontrib><creatorcontrib>Mohanty, Chinmaya Prasad</creatorcontrib><creatorcontrib>Singh, Manas Ranjan</creatorcontrib><creatorcontrib>Kumar, Ashwini</creatorcontrib><creatorcontrib>Linul, Emanoil</creatorcontrib><creatorcontrib>Rajak, Dipen Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behura, Aruna Kumar</au><au>Mohanty, Chinmaya Prasad</au><au>Singh, Manas Ranjan</au><au>Kumar, Ashwini</au><au>Linul, Emanoil</au><au>Rajak, Dipen Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-30</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>2541</spage><pages>2541-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75-80%, 74-78%, and 63-71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35407874</pmid><doi>10.3390/ma15072541</doi><orcidid>https://orcid.org/0000-0003-3120-0294</orcidid><orcidid>https://orcid.org/0000-0003-4469-2654</orcidid><orcidid>https://orcid.org/0000-0002-4984-2669</orcidid><orcidid>https://orcid.org/0000-0001-9090-8917</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (7), p.2541 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8999575 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central(OpenAccess); Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Air temperature Alternative energy sources Cookers Efficiency Flat plates Friction Green buildings Heat transfer Heaters Mass flow rate Mathematical models Optimization Optimization techniques Photovoltaic cells Roughness Solar energy |
title | Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Three%20Side%20Roughened%20Solar%20Air%20Heater:%20A%20Preliminary%20Investigation&rft.jtitle=Materials&rft.au=Behura,%20Aruna%20Kumar&rft.date=2022-03-30&rft.volume=15&rft.issue=7&rft.spage=2541&rft.pages=2541-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15072541&rft_dat=%3Cproquest_pubme%3E2649587301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649056819&rft_id=info:pmid/35407874&rfr_iscdi=true |