Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up

Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiographics 2011-10, Vol.31 (6), p.1773-1791
Hauptverfasser: Malayeri, Ashkan A, El Khouli, Riham H, Zaheer, Atif, Jacobs, Michael A, Corona-Villalobos, Celia P, Kamel, Ihab R, Macura, Katarzyna J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1791
container_issue 6
container_start_page 1773
container_title Radiographics
container_volume 31
creator Malayeri, Ashkan A
El Khouli, Riham H
Zaheer, Atif
Jacobs, Michael A
Corona-Villalobos, Celia P
Kamel, Ihab R
Macura, Katarzyna J
description Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whole-body imaging have attracted considerable attention, especially in the field of oncology. Diffusion-weighted imaging is being established as a pivotal aspect of MR imaging in the evaluation of specific organs, including the breast, liver, kidney, and those in the pelvis. When used in conjunction with apparent diffusion coefficient mapping, diffusion-weighted imaging provides information about the functional environment of water in tissues, thereby augmenting the morphologic information provided by conventional MR imaging. Detected changes include shifts of water from extracellular to intracellular spaces, restriction of cellular membrane permeability, increased cellular density, and disruption of cellular membrane depolarization. These findings are commonly associated with malignancies; therefore, diffusion-weighted imaging has many applications in oncologic imaging and can aid in tumor detection and characterization and in the prediction and assessment of response to therapy.
doi_str_mv 10.1148/rg.316115515
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8996338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>898508354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3692ec0ee875132b139d73765f4aa422f56345abafb3a4c55ac86da0635e69f13</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotuFG2fkG5dNiTOxE1-QUNUWpErlAGdr1hmnRlk72A4V_z3pByt6Go3mN2_e6DH2TtRnQrT9xzSegVBCSCnkC7YRsukqAQ28ZJu66UQlAeCEneb8s65FK3v1mp00QutO63bD4rfkg_XzRJljGDjO8-QtFh9D5tHxwTu35LWr7siPt4UG7g84-jByH7jFYCnxgQrZ-5Udz-VhuHsQK4mwHCgU7uI0xbtqmd-wVw6nTG-f6pb9uLz4fv6lur65-nr--bqy0EOpQOmGbE3Ud3J9Zi9ADx10SroWsW0aJxW0Evfo9oCtlRJtrwasFUhS2gnYsk-PuvOyP9BgVxMJJzOn1X36YyJ683wS_K0Z42_Ta61g9bBlH54EUvy1UC7m4LOlacJAcckr18u6B9mu5O6RtCnmnMgdr4ja3Edk0miOEa34-_-dHeF_mcBfCQyPRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898508354</pqid></control><display><type>article</type><title>Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Malayeri, Ashkan A ; El Khouli, Riham H ; Zaheer, Atif ; Jacobs, Michael A ; Corona-Villalobos, Celia P ; Kamel, Ihab R ; Macura, Katarzyna J</creator><creatorcontrib>Malayeri, Ashkan A ; El Khouli, Riham H ; Zaheer, Atif ; Jacobs, Michael A ; Corona-Villalobos, Celia P ; Kamel, Ihab R ; Macura, Katarzyna J</creatorcontrib><description>Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whole-body imaging have attracted considerable attention, especially in the field of oncology. Diffusion-weighted imaging is being established as a pivotal aspect of MR imaging in the evaluation of specific organs, including the breast, liver, kidney, and those in the pelvis. When used in conjunction with apparent diffusion coefficient mapping, diffusion-weighted imaging provides information about the functional environment of water in tissues, thereby augmenting the morphologic information provided by conventional MR imaging. Detected changes include shifts of water from extracellular to intracellular spaces, restriction of cellular membrane permeability, increased cellular density, and disruption of cellular membrane depolarization. These findings are commonly associated with malignancies; therefore, diffusion-weighted imaging has many applications in oncologic imaging and can aid in tumor detection and characterization and in the prediction and assessment of response to therapy.</description><identifier>ISSN: 0271-5333</identifier><identifier>EISSN: 1527-1323</identifier><identifier>DOI: 10.1148/rg.316115515</identifier><identifier>PMID: 21997994</identifier><language>eng</language><publisher>United States: Radiological Society of North America</publisher><subject>Contrast Media ; Diffusion Magnetic Resonance Imaging - methods ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted ; Multisystem Imaging ; Neoplasm Staging ; Neoplasms - diagnosis ; Neoplasms - pathology ; Neoplasms - therapy ; Predictive Value of Tests ; Whole Body Imaging</subject><ispartof>Radiographics, 2011-10, Vol.31 (6), p.1773-1791</ispartof><rights>RSNA, 2011.</rights><rights>RSNA, 2011 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3692ec0ee875132b139d73765f4aa422f56345abafb3a4c55ac86da0635e69f13</citedby><cites>FETCH-LOGICAL-c383t-3692ec0ee875132b139d73765f4aa422f56345abafb3a4c55ac86da0635e69f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malayeri, Ashkan A</creatorcontrib><creatorcontrib>El Khouli, Riham H</creatorcontrib><creatorcontrib>Zaheer, Atif</creatorcontrib><creatorcontrib>Jacobs, Michael A</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P</creatorcontrib><creatorcontrib>Kamel, Ihab R</creatorcontrib><creatorcontrib>Macura, Katarzyna J</creatorcontrib><title>Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up</title><title>Radiographics</title><addtitle>Radiographics</addtitle><description>Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whole-body imaging have attracted considerable attention, especially in the field of oncology. Diffusion-weighted imaging is being established as a pivotal aspect of MR imaging in the evaluation of specific organs, including the breast, liver, kidney, and those in the pelvis. When used in conjunction with apparent diffusion coefficient mapping, diffusion-weighted imaging provides information about the functional environment of water in tissues, thereby augmenting the morphologic information provided by conventional MR imaging. Detected changes include shifts of water from extracellular to intracellular spaces, restriction of cellular membrane permeability, increased cellular density, and disruption of cellular membrane depolarization. These findings are commonly associated with malignancies; therefore, diffusion-weighted imaging has many applications in oncologic imaging and can aid in tumor detection and characterization and in the prediction and assessment of response to therapy.</description><subject>Contrast Media</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Multisystem Imaging</subject><subject>Neoplasm Staging</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - therapy</subject><subject>Predictive Value of Tests</subject><subject>Whole Body Imaging</subject><issn>0271-5333</issn><issn>1527-1323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EotuFG2fkG5dNiTOxE1-QUNUWpErlAGdr1hmnRlk72A4V_z3pByt6Go3mN2_e6DH2TtRnQrT9xzSegVBCSCnkC7YRsukqAQ28ZJu66UQlAeCEneb8s65FK3v1mp00QutO63bD4rfkg_XzRJljGDjO8-QtFh9D5tHxwTu35LWr7siPt4UG7g84-jByH7jFYCnxgQrZ-5Udz-VhuHsQK4mwHCgU7uI0xbtqmd-wVw6nTG-f6pb9uLz4fv6lur65-nr--bqy0EOpQOmGbE3Ud3J9Zi9ADx10SroWsW0aJxW0Evfo9oCtlRJtrwasFUhS2gnYsk-PuvOyP9BgVxMJJzOn1X36YyJ683wS_K0Z42_Ta61g9bBlH54EUvy1UC7m4LOlacJAcckr18u6B9mu5O6RtCnmnMgdr4ja3Edk0miOEa34-_-dHeF_mcBfCQyPRA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Malayeri, Ashkan A</creator><creator>El Khouli, Riham H</creator><creator>Zaheer, Atif</creator><creator>Jacobs, Michael A</creator><creator>Corona-Villalobos, Celia P</creator><creator>Kamel, Ihab R</creator><creator>Macura, Katarzyna J</creator><general>Radiological Society of North America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up</title><author>Malayeri, Ashkan A ; El Khouli, Riham H ; Zaheer, Atif ; Jacobs, Michael A ; Corona-Villalobos, Celia P ; Kamel, Ihab R ; Macura, Katarzyna J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3692ec0ee875132b139d73765f4aa422f56345abafb3a4c55ac86da0635e69f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Contrast Media</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Multisystem Imaging</topic><topic>Neoplasm Staging</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - therapy</topic><topic>Predictive Value of Tests</topic><topic>Whole Body Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malayeri, Ashkan A</creatorcontrib><creatorcontrib>El Khouli, Riham H</creatorcontrib><creatorcontrib>Zaheer, Atif</creatorcontrib><creatorcontrib>Jacobs, Michael A</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P</creatorcontrib><creatorcontrib>Kamel, Ihab R</creatorcontrib><creatorcontrib>Macura, Katarzyna J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiographics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malayeri, Ashkan A</au><au>El Khouli, Riham H</au><au>Zaheer, Atif</au><au>Jacobs, Michael A</au><au>Corona-Villalobos, Celia P</au><au>Kamel, Ihab R</au><au>Macura, Katarzyna J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up</atitle><jtitle>Radiographics</jtitle><addtitle>Radiographics</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>31</volume><issue>6</issue><spage>1773</spage><epage>1791</epage><pages>1773-1791</pages><issn>0271-5333</issn><eissn>1527-1323</eissn><abstract>Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whole-body imaging have attracted considerable attention, especially in the field of oncology. Diffusion-weighted imaging is being established as a pivotal aspect of MR imaging in the evaluation of specific organs, including the breast, liver, kidney, and those in the pelvis. When used in conjunction with apparent diffusion coefficient mapping, diffusion-weighted imaging provides information about the functional environment of water in tissues, thereby augmenting the morphologic information provided by conventional MR imaging. Detected changes include shifts of water from extracellular to intracellular spaces, restriction of cellular membrane permeability, increased cellular density, and disruption of cellular membrane depolarization. These findings are commonly associated with malignancies; therefore, diffusion-weighted imaging has many applications in oncologic imaging and can aid in tumor detection and characterization and in the prediction and assessment of response to therapy.</abstract><cop>United States</cop><pub>Radiological Society of North America</pub><pmid>21997994</pmid><doi>10.1148/rg.316115515</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-5333
ispartof Radiographics, 2011-10, Vol.31 (6), p.1773-1791
issn 0271-5333
1527-1323
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8996338
source MEDLINE; Alma/SFX Local Collection
subjects Contrast Media
Diffusion Magnetic Resonance Imaging - methods
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted
Multisystem Imaging
Neoplasm Staging
Neoplasms - diagnosis
Neoplasms - pathology
Neoplasms - therapy
Predictive Value of Tests
Whole Body Imaging
title Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20and%20applications%20of%20diffusion-weighted%20imaging%20in%20cancer%20detection,%20staging,%20and%20treatment%20follow-up&rft.jtitle=Radiographics&rft.au=Malayeri,%20Ashkan%20A&rft.date=2011-10-01&rft.volume=31&rft.issue=6&rft.spage=1773&rft.epage=1791&rft.pages=1773-1791&rft.issn=0271-5333&rft.eissn=1527-1323&rft_id=info:doi/10.1148/rg.316115515&rft_dat=%3Cproquest_pubme%3E898508354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898508354&rft_id=info:pmid/21997994&rfr_iscdi=true