S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit
The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independe...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2022-05, Vol.79 (5), p.230-230, Article 230 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 5 |
container_start_page | 230 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 79 |
creator | Roig, Sara R. Cassinelli, Silvia Navarro-Pérez, María Pérez-Verdaguer, Mireia Estadella, Irene Capera, Jesusa Felipe, Antonio |
description | The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation. |
doi_str_mv | 10.1007/s00018-022-04269-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8994742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648900770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS1ERH7gAixQS2yyceK_7rY3SCgKJEokFoAEK8ttV08cddsTuzvS5FgchDPFmZkEwoKVLdVXr17VQ-gtJUeUkPY4E0KoxIQxTARrFOYv0B4VjGBFWvpy-28k-7GL9nO-LnQtWfMK7fKaq0YJtod-fsXGrgYz-RiwgyUEB2GqRhi7ZAJUo7cpujgaH6ohWjP4uzVbxb6arqBKsJhLd0yr6uL29y92RKs8d3Pw02u005shw5vte4C-fzr9dnKGL798Pj_5eImtaMWEW0eAW2aFlEYY5RojSe0kgO2dqVsuaWuEVLIzxtK-J9QR2YlaNRYYt1TyA_Rho7ucuxGcLfaTGfQy-dGklY7G6-eV4K_0It5qqVRxwIrA4VYgxZsZ8qRHny0MQ9k_zlmzpswv925JQd__g17HOYWy3ppqWDH6QLENVU6Xc4L-yQwl-iE5vUlOl-T0OjnNS9O7v9d4anmMqgB8A-RSCgtIf2b_R_YetWimlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648628980</pqid></control><display><type>article</type><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</creator><creatorcontrib>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</creatorcontrib><description>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-022-04269-3</identifier><identifier>PMID: 35396942</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acylation ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell activation ; Cell Biology ; Cell surface ; Cellular structure ; Channels ; Growth factors ; Immune response ; Immune system ; Immunological synapses ; Immunology ; Immunomodulation ; Leukocytes ; Life Sciences ; Lipids ; Localization ; Lymphocytes ; Membrane Microdomains ; Membranes ; Modulators ; Original ; Original Article ; Palmitoylation ; Peptides ; Postsynaptic density proteins ; Potassium channels (voltage-gated) ; Spatial discrimination ; Structural members ; Synapses</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.230-230, Article 230</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</citedby><cites>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</cites><orcidid>0000-0002-6779-4269 ; 0000-0001-5103-206X ; 0000-0001-8106-9787 ; 0000-0002-7294-6431 ; 0000-0002-8123-7725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994742/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994742/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35396942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roig, Sara R.</creatorcontrib><creatorcontrib>Cassinelli, Silvia</creatorcontrib><creatorcontrib>Navarro-Pérez, María</creatorcontrib><creatorcontrib>Pérez-Verdaguer, Mireia</creatorcontrib><creatorcontrib>Estadella, Irene</creatorcontrib><creatorcontrib>Capera, Jesusa</creatorcontrib><creatorcontrib>Felipe, Antonio</creatorcontrib><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</description><subject>Acylation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cellular structure</subject><subject>Channels</subject><subject>Growth factors</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunological synapses</subject><subject>Immunology</subject><subject>Immunomodulation</subject><subject>Leukocytes</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Membrane Microdomains</subject><subject>Membranes</subject><subject>Modulators</subject><subject>Original</subject><subject>Original Article</subject><subject>Palmitoylation</subject><subject>Peptides</subject><subject>Postsynaptic density proteins</subject><subject>Potassium channels (voltage-gated)</subject><subject>Spatial discrimination</subject><subject>Structural members</subject><subject>Synapses</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1uFDEQhS1ERH7gAixQS2yyceK_7rY3SCgKJEokFoAEK8ttV08cddsTuzvS5FgchDPFmZkEwoKVLdVXr17VQ-gtJUeUkPY4E0KoxIQxTARrFOYv0B4VjGBFWvpy-28k-7GL9nO-LnQtWfMK7fKaq0YJtod-fsXGrgYz-RiwgyUEB2GqRhi7ZAJUo7cpujgaH6ohWjP4uzVbxb6arqBKsJhLd0yr6uL29y92RKs8d3Pw02u005shw5vte4C-fzr9dnKGL798Pj_5eImtaMWEW0eAW2aFlEYY5RojSe0kgO2dqVsuaWuEVLIzxtK-J9QR2YlaNRYYt1TyA_Rho7ucuxGcLfaTGfQy-dGklY7G6-eV4K_0It5qqVRxwIrA4VYgxZsZ8qRHny0MQ9k_zlmzpswv925JQd__g17HOYWy3ppqWDH6QLENVU6Xc4L-yQwl-iE5vUlOl-T0OjnNS9O7v9d4anmMqgB8A-RSCgtIf2b_R_YetWimlA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Roig, Sara R.</creator><creator>Cassinelli, Silvia</creator><creator>Navarro-Pérez, María</creator><creator>Pérez-Verdaguer, Mireia</creator><creator>Estadella, Irene</creator><creator>Capera, Jesusa</creator><creator>Felipe, Antonio</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6779-4269</orcidid><orcidid>https://orcid.org/0000-0001-5103-206X</orcidid><orcidid>https://orcid.org/0000-0001-8106-9787</orcidid><orcidid>https://orcid.org/0000-0002-7294-6431</orcidid><orcidid>https://orcid.org/0000-0002-8123-7725</orcidid></search><sort><creationdate>20220501</creationdate><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><author>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acylation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cellular structure</topic><topic>Channels</topic><topic>Growth factors</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunological synapses</topic><topic>Immunology</topic><topic>Immunomodulation</topic><topic>Leukocytes</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Membrane Microdomains</topic><topic>Membranes</topic><topic>Modulators</topic><topic>Original</topic><topic>Original Article</topic><topic>Palmitoylation</topic><topic>Peptides</topic><topic>Postsynaptic density proteins</topic><topic>Potassium channels (voltage-gated)</topic><topic>Spatial discrimination</topic><topic>Structural members</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roig, Sara R.</creatorcontrib><creatorcontrib>Cassinelli, Silvia</creatorcontrib><creatorcontrib>Navarro-Pérez, María</creatorcontrib><creatorcontrib>Pérez-Verdaguer, Mireia</creatorcontrib><creatorcontrib>Estadella, Irene</creatorcontrib><creatorcontrib>Capera, Jesusa</creatorcontrib><creatorcontrib>Felipe, Antonio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roig, Sara R.</au><au>Cassinelli, Silvia</au><au>Navarro-Pérez, María</au><au>Pérez-Verdaguer, Mireia</au><au>Estadella, Irene</au><au>Capera, Jesusa</au><au>Felipe, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>79</volume><issue>5</issue><spage>230</spage><epage>230</epage><pages>230-230</pages><artnum>230</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35396942</pmid><doi>10.1007/s00018-022-04269-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6779-4269</orcidid><orcidid>https://orcid.org/0000-0001-5103-206X</orcidid><orcidid>https://orcid.org/0000-0001-8106-9787</orcidid><orcidid>https://orcid.org/0000-0002-7294-6431</orcidid><orcidid>https://orcid.org/0000-0002-8123-7725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.230-230, Article 230 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8994742 |
source | MEDLINE; SpringerNature Journals; PubMed Central |
subjects | Acylation Biochemistry Biomedical and Life Sciences Biomedicine Cell activation Cell Biology Cell surface Cellular structure Channels Growth factors Immune response Immune system Immunological synapses Immunology Immunomodulation Leukocytes Life Sciences Lipids Localization Lymphocytes Membrane Microdomains Membranes Modulators Original Original Article Palmitoylation Peptides Postsynaptic density proteins Potassium channels (voltage-gated) Spatial discrimination Structural members Synapses |
title | S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-acylation-dependent%20membrane%20microdomain%20localization%20of%20the%20regulatory%20Kv%CE%B22.1%20subunit&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Roig,%20Sara%20R.&rft.date=2022-05-01&rft.volume=79&rft.issue=5&rft.spage=230&rft.epage=230&rft.pages=230-230&rft.artnum=230&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-022-04269-3&rft_dat=%3Cproquest_pubme%3E2648900770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648628980&rft_id=info:pmid/35396942&rfr_iscdi=true |