S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit

The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2022-05, Vol.79 (5), p.230-230, Article 230
Hauptverfasser: Roig, Sara R., Cassinelli, Silvia, Navarro-Pérez, María, Pérez-Verdaguer, Mireia, Estadella, Irene, Capera, Jesusa, Felipe, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 5
container_start_page 230
container_title Cellular and molecular life sciences : CMLS
container_volume 79
creator Roig, Sara R.
Cassinelli, Silvia
Navarro-Pérez, María
Pérez-Verdaguer, Mireia
Estadella, Irene
Capera, Jesusa
Felipe, Antonio
description The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.
doi_str_mv 10.1007/s00018-022-04269-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8994742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648900770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS1ERH7gAixQS2yyceK_7rY3SCgKJEokFoAEK8ttV08cddsTuzvS5FgchDPFmZkEwoKVLdVXr17VQ-gtJUeUkPY4E0KoxIQxTARrFOYv0B4VjGBFWvpy-28k-7GL9nO-LnQtWfMK7fKaq0YJtod-fsXGrgYz-RiwgyUEB2GqRhi7ZAJUo7cpujgaH6ohWjP4uzVbxb6arqBKsJhLd0yr6uL29y92RKs8d3Pw02u005shw5vte4C-fzr9dnKGL798Pj_5eImtaMWEW0eAW2aFlEYY5RojSe0kgO2dqVsuaWuEVLIzxtK-J9QR2YlaNRYYt1TyA_Rho7ucuxGcLfaTGfQy-dGklY7G6-eV4K_0It5qqVRxwIrA4VYgxZsZ8qRHny0MQ9k_zlmzpswv925JQd__g17HOYWy3ppqWDH6QLENVU6Xc4L-yQwl-iE5vUlOl-T0OjnNS9O7v9d4anmMqgB8A-RSCgtIf2b_R_YetWimlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648628980</pqid></control><display><type>article</type><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</creator><creatorcontrib>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</creatorcontrib><description>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-022-04269-3</identifier><identifier>PMID: 35396942</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acylation ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell activation ; Cell Biology ; Cell surface ; Cellular structure ; Channels ; Growth factors ; Immune response ; Immune system ; Immunological synapses ; Immunology ; Immunomodulation ; Leukocytes ; Life Sciences ; Lipids ; Localization ; Lymphocytes ; Membrane Microdomains ; Membranes ; Modulators ; Original ; Original Article ; Palmitoylation ; Peptides ; Postsynaptic density proteins ; Potassium channels (voltage-gated) ; Spatial discrimination ; Structural members ; Synapses</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.230-230, Article 230</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</citedby><cites>FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</cites><orcidid>0000-0002-6779-4269 ; 0000-0001-5103-206X ; 0000-0001-8106-9787 ; 0000-0002-7294-6431 ; 0000-0002-8123-7725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994742/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994742/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35396942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roig, Sara R.</creatorcontrib><creatorcontrib>Cassinelli, Silvia</creatorcontrib><creatorcontrib>Navarro-Pérez, María</creatorcontrib><creatorcontrib>Pérez-Verdaguer, Mireia</creatorcontrib><creatorcontrib>Estadella, Irene</creatorcontrib><creatorcontrib>Capera, Jesusa</creatorcontrib><creatorcontrib>Felipe, Antonio</creatorcontrib><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</description><subject>Acylation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cellular structure</subject><subject>Channels</subject><subject>Growth factors</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunological synapses</subject><subject>Immunology</subject><subject>Immunomodulation</subject><subject>Leukocytes</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Membrane Microdomains</subject><subject>Membranes</subject><subject>Modulators</subject><subject>Original</subject><subject>Original Article</subject><subject>Palmitoylation</subject><subject>Peptides</subject><subject>Postsynaptic density proteins</subject><subject>Potassium channels (voltage-gated)</subject><subject>Spatial discrimination</subject><subject>Structural members</subject><subject>Synapses</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1uFDEQhS1ERH7gAixQS2yyceK_7rY3SCgKJEokFoAEK8ttV08cddsTuzvS5FgchDPFmZkEwoKVLdVXr17VQ-gtJUeUkPY4E0KoxIQxTARrFOYv0B4VjGBFWvpy-28k-7GL9nO-LnQtWfMK7fKaq0YJtod-fsXGrgYz-RiwgyUEB2GqRhi7ZAJUo7cpujgaH6ohWjP4uzVbxb6arqBKsJhLd0yr6uL29y92RKs8d3Pw02u005shw5vte4C-fzr9dnKGL798Pj_5eImtaMWEW0eAW2aFlEYY5RojSe0kgO2dqVsuaWuEVLIzxtK-J9QR2YlaNRYYt1TyA_Rho7ucuxGcLfaTGfQy-dGklY7G6-eV4K_0It5qqVRxwIrA4VYgxZsZ8qRHny0MQ9k_zlmzpswv925JQd__g17HOYWy3ppqWDH6QLENVU6Xc4L-yQwl-iE5vUlOl-T0OjnNS9O7v9d4anmMqgB8A-RSCgtIf2b_R_YetWimlA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Roig, Sara R.</creator><creator>Cassinelli, Silvia</creator><creator>Navarro-Pérez, María</creator><creator>Pérez-Verdaguer, Mireia</creator><creator>Estadella, Irene</creator><creator>Capera, Jesusa</creator><creator>Felipe, Antonio</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6779-4269</orcidid><orcidid>https://orcid.org/0000-0001-5103-206X</orcidid><orcidid>https://orcid.org/0000-0001-8106-9787</orcidid><orcidid>https://orcid.org/0000-0002-7294-6431</orcidid><orcidid>https://orcid.org/0000-0002-8123-7725</orcidid></search><sort><creationdate>20220501</creationdate><title>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</title><author>Roig, Sara R. ; Cassinelli, Silvia ; Navarro-Pérez, María ; Pérez-Verdaguer, Mireia ; Estadella, Irene ; Capera, Jesusa ; Felipe, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7d0e3c2c488a4a9d6a805d8eecfda573817a4898baac1ff01d08b4596ce23c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acylation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cellular structure</topic><topic>Channels</topic><topic>Growth factors</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunological synapses</topic><topic>Immunology</topic><topic>Immunomodulation</topic><topic>Leukocytes</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Membrane Microdomains</topic><topic>Membranes</topic><topic>Modulators</topic><topic>Original</topic><topic>Original Article</topic><topic>Palmitoylation</topic><topic>Peptides</topic><topic>Postsynaptic density proteins</topic><topic>Potassium channels (voltage-gated)</topic><topic>Spatial discrimination</topic><topic>Structural members</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roig, Sara R.</creatorcontrib><creatorcontrib>Cassinelli, Silvia</creatorcontrib><creatorcontrib>Navarro-Pérez, María</creatorcontrib><creatorcontrib>Pérez-Verdaguer, Mireia</creatorcontrib><creatorcontrib>Estadella, Irene</creatorcontrib><creatorcontrib>Capera, Jesusa</creatorcontrib><creatorcontrib>Felipe, Antonio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roig, Sara R.</au><au>Cassinelli, Silvia</au><au>Navarro-Pérez, María</au><au>Pérez-Verdaguer, Mireia</au><au>Estadella, Irene</au><au>Capera, Jesusa</au><au>Felipe, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>79</volume><issue>5</issue><spage>230</spage><epage>230</epage><pages>230-230</pages><artnum>230</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35396942</pmid><doi>10.1007/s00018-022-04269-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6779-4269</orcidid><orcidid>https://orcid.org/0000-0001-5103-206X</orcidid><orcidid>https://orcid.org/0000-0001-8106-9787</orcidid><orcidid>https://orcid.org/0000-0002-7294-6431</orcidid><orcidid>https://orcid.org/0000-0002-8123-7725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2022-05, Vol.79 (5), p.230-230, Article 230
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8994742
source MEDLINE; SpringerNature Journals; PubMed Central
subjects Acylation
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell activation
Cell Biology
Cell surface
Cellular structure
Channels
Growth factors
Immune response
Immune system
Immunological synapses
Immunology
Immunomodulation
Leukocytes
Life Sciences
Lipids
Localization
Lymphocytes
Membrane Microdomains
Membranes
Modulators
Original
Original Article
Palmitoylation
Peptides
Postsynaptic density proteins
Potassium channels (voltage-gated)
Spatial discrimination
Structural members
Synapses
title S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-acylation-dependent%20membrane%20microdomain%20localization%20of%20the%20regulatory%20Kv%CE%B22.1%20subunit&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Roig,%20Sara%20R.&rft.date=2022-05-01&rft.volume=79&rft.issue=5&rft.spage=230&rft.epage=230&rft.pages=230-230&rft.artnum=230&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-022-04269-3&rft_dat=%3Cproquest_pubme%3E2648900770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648628980&rft_id=info:pmid/35396942&rfr_iscdi=true