Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis

Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet (British edition) 2022-06, Vol.399 (10344), p.2351-2380
Hauptverfasser: Barber, Ryan M, Sorensen, Reed J D, Pigott, David M, Bisignano, Catherine, Carter, Austin, Amlag, Joanne O, Collins, James K, Abbafati, Cristiana, Adolph, Christopher, Allorant, Adrien, Aravkin, Aleksandr Y, Bang-Jensen, Bree L, Castro, Emma, Chakrabarti, Suman, Cogen, Rebecca M, Combs, Emily, Comfort, Haley, Cooperrider, Kimberly, Dai, Xiaochen, Daoud, Farah, Deen, Amanda, Earl, Lucas, Erickson, Megan, Ewald, Samuel B, Ferrari, Alize J, Flaxman, Abraham D, Frostad, Joseph Jon, Fullman, Nancy, Giles, John R, Guo, Gaorui, He, Jiawei, Helak, Monika, Hulland, Erin N, Huntley, Bethany M, Lazzar-Atwood, Alice, LeGrand, Kate E, Lim, Stephen S, Lindstrom, Akiaja, Linebarger, Emily, Lozano, Rafael, Magistro, Beatrice, Malta, Deborah Carvalho, Månsson, Johan, Mantilla Herrera, Ana M, Mokdad, Ali H, Monasta, Lorenzo, Naghavi, Mohsen, Nomura, Shuhei, Odell, Christopher M, Olana, Latera Tesfaye, Ostroff, Samuel M, Pasovic, Maja, Pease, Spencer A, Reiner Jr, Robert C, Reinke, Grace, Ribeiro, Antonio Luiz P, Santomauro, Damian F, Sholokhov, Aleksei, Spurlock, Emma E, Syailendrawati, Ruri, Topor-Madry, Roman, Vo, Anh Truc, Vos, Theo, Walcott, Rebecca, Walker, Ally, Wiens, Kirsten E, Wiysonge, Charles Shey, Worku, Nahom Alemseged, Zheng, Peng, Hay, Simon I, Gakidou, Emmanuela, Murray, Christopher J L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2380
container_issue 10344
container_start_page 2351
container_title The Lancet (British edition)
container_volume 399
creator Barber, Ryan M
Sorensen, Reed J D
Pigott, David M
Bisignano, Catherine
Carter, Austin
Amlag, Joanne O
Collins, James K
Abbafati, Cristiana
Adolph, Christopher
Allorant, Adrien
Aravkin, Aleksandr Y
Bang-Jensen, Bree L
Castro, Emma
Chakrabarti, Suman
Cogen, Rebecca M
Combs, Emily
Comfort, Haley
Cooperrider, Kimberly
Dai, Xiaochen
Daoud, Farah
Deen, Amanda
Earl, Lucas
Erickson, Megan
Ewald, Samuel B
Ferrari, Alize J
Flaxman, Abraham D
Frostad, Joseph Jon
Fullman, Nancy
Giles, John R
Guo, Gaorui
He, Jiawei
Helak, Monika
Hulland, Erin N
Huntley, Bethany M
Lazzar-Atwood, Alice
LeGrand, Kate E
Lim, Stephen S
Lindstrom, Akiaja
Linebarger, Emily
Lozano, Rafael
Magistro, Beatrice
Malta, Deborah Carvalho
Månsson, Johan
Mantilla Herrera, Ana M
Mokdad, Ali H
Monasta, Lorenzo
Naghavi, Mohsen
Nomura, Shuhei
Odell, Christopher M
Olana, Latera Tesfaye
Ostroff, Samuel M
Pasovic, Maja
Pease, Spencer A
Reiner Jr, Robert C
Reinke, Grace
Ribeiro, Antonio Luiz P
Santomauro, Damian F
Sholokhov, Aleksei
Spurlock, Emma E
Syailendrawati, Ruri
Topor-Madry, Roman
Vo, Anh Truc
Vos, Theo
Walcott, Rebecca
Walker, Ally
Wiens, Kirsten E
Wiysonge, Charles Shey
Worku, Nahom Alemseged
Zheng, Peng
Hay, Simon I
Gakidou, Emmanuela
Murray, Christopher J L
description Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases. We produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection–detection ratios (IDRs), infection–hospitalisation ratios (IHRs), and infection–fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportio
doi_str_mv 10.1016/S0140-6736(22)00484-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140673622004846</els_id><sourcerecordid>2649593742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-5305954608bf15668ca5cd79eccea2caaf970af71860cc83d775869fc4e69a6a3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi1ERUPhEUCWuBSpC7bXfzmAqqi0lSqQCCBuluP1blxt7GLvBuUFeG68SYmACyfbM7_5xjMfAM8weoUR5q8XCFNUcVHzU0JeIkQlrfgDMMNU0IpR8e0hmB2QY_A451tUKI7YI3BcM4oYknQGfl7kwa_N4EMHuz4uTX8Gk-t8DNPNhAaGkpxesDG-3-5CdlyPfQlvHPShdXYCMvzhhxVcnH9aVPP4tSJwWKU4div4IW4gpmeQIILfQAPzUEpLV1s0TRHeZp-fgKPW9Nk9vT9PwJf3F5_nV9XNx8vr-flNZctIQ8VqxBQrQ8hlixnn0hpmG6Gctc4Qa0yrBDKtwJIja2XdCMEkV62ljivDTX0C3u5178bl2jXWhSGZXt-lsoO01dF4_Xcm-JXu4kZLpWrMRBE4vRdI8fvo8qDXPlvX9ya4OGZNOFVM1YKSgr74B72NYyoDT5REWNUIT4JsT9kUc06uPXwGIz05rXdO68lGTYjeOa15qXv-5ySHqt_WFuDdHnBlnxvvks7Wu2Bd41OxTDfR_6fFL2uKuLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680193017</pqid></control><display><type>article</type><title>Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Barber, Ryan M ; Sorensen, Reed J D ; Pigott, David M ; Bisignano, Catherine ; Carter, Austin ; Amlag, Joanne O ; Collins, James K ; Abbafati, Cristiana ; Adolph, Christopher ; Allorant, Adrien ; Aravkin, Aleksandr Y ; Bang-Jensen, Bree L ; Castro, Emma ; Chakrabarti, Suman ; Cogen, Rebecca M ; Combs, Emily ; Comfort, Haley ; Cooperrider, Kimberly ; Dai, Xiaochen ; Daoud, Farah ; Deen, Amanda ; Earl, Lucas ; Erickson, Megan ; Ewald, Samuel B ; Ferrari, Alize J ; Flaxman, Abraham D ; Frostad, Joseph Jon ; Fullman, Nancy ; Giles, John R ; Guo, Gaorui ; He, Jiawei ; Helak, Monika ; Hulland, Erin N ; Huntley, Bethany M ; Lazzar-Atwood, Alice ; LeGrand, Kate E ; Lim, Stephen S ; Lindstrom, Akiaja ; Linebarger, Emily ; Lozano, Rafael ; Magistro, Beatrice ; Malta, Deborah Carvalho ; Månsson, Johan ; Mantilla Herrera, Ana M ; Mokdad, Ali H ; Monasta, Lorenzo ; Naghavi, Mohsen ; Nomura, Shuhei ; Odell, Christopher M ; Olana, Latera Tesfaye ; Ostroff, Samuel M ; Pasovic, Maja ; Pease, Spencer A ; Reiner Jr, Robert C ; Reinke, Grace ; Ribeiro, Antonio Luiz P ; Santomauro, Damian F ; Sholokhov, Aleksei ; Spurlock, Emma E ; Syailendrawati, Ruri ; Topor-Madry, Roman ; Vo, Anh Truc ; Vos, Theo ; Walcott, Rebecca ; Walker, Ally ; Wiens, Kirsten E ; Wiysonge, Charles Shey ; Worku, Nahom Alemseged ; Zheng, Peng ; Hay, Simon I ; Gakidou, Emmanuela ; Murray, Christopher J L</creator><creatorcontrib>Barber, Ryan M ; Sorensen, Reed J D ; Pigott, David M ; Bisignano, Catherine ; Carter, Austin ; Amlag, Joanne O ; Collins, James K ; Abbafati, Cristiana ; Adolph, Christopher ; Allorant, Adrien ; Aravkin, Aleksandr Y ; Bang-Jensen, Bree L ; Castro, Emma ; Chakrabarti, Suman ; Cogen, Rebecca M ; Combs, Emily ; Comfort, Haley ; Cooperrider, Kimberly ; Dai, Xiaochen ; Daoud, Farah ; Deen, Amanda ; Earl, Lucas ; Erickson, Megan ; Ewald, Samuel B ; Ferrari, Alize J ; Flaxman, Abraham D ; Frostad, Joseph Jon ; Fullman, Nancy ; Giles, John R ; Guo, Gaorui ; He, Jiawei ; Helak, Monika ; Hulland, Erin N ; Huntley, Bethany M ; Lazzar-Atwood, Alice ; LeGrand, Kate E ; Lim, Stephen S ; Lindstrom, Akiaja ; Linebarger, Emily ; Lozano, Rafael ; Magistro, Beatrice ; Malta, Deborah Carvalho ; Månsson, Johan ; Mantilla Herrera, Ana M ; Mokdad, Ali H ; Monasta, Lorenzo ; Naghavi, Mohsen ; Nomura, Shuhei ; Odell, Christopher M ; Olana, Latera Tesfaye ; Ostroff, Samuel M ; Pasovic, Maja ; Pease, Spencer A ; Reiner Jr, Robert C ; Reinke, Grace ; Ribeiro, Antonio Luiz P ; Santomauro, Damian F ; Sholokhov, Aleksei ; Spurlock, Emma E ; Syailendrawati, Ruri ; Topor-Madry, Roman ; Vo, Anh Truc ; Vos, Theo ; Walcott, Rebecca ; Walker, Ally ; Wiens, Kirsten E ; Wiysonge, Charles Shey ; Worku, Nahom Alemseged ; Zheng, Peng ; Hay, Simon I ; Gakidou, Emmanuela ; Murray, Christopher J L ; COVID-19 Cumulative Infection Collaborators</creatorcontrib><description>Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases. We produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection–detection ratios (IDRs), infection–hospitalisation ratios (IHRs), and infection–fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportion of the population with one or more infections, and we then calculated posterior estimates of cumulative IDR, IHR, and IFR using cumulative infections and the corrected data on reported cases, hospitalisations, and deaths. Finally, we converted daily infections into a historical time series of Reffective by location and day based on assumptions of duration from infection to infectiousness and time an individual spent being infectious. For each of these quantities, we estimated a distribution based on an ensemble framework that captured uncertainty in data sources, model design, and parameter assumptions. Global daily SARS-CoV-2 infections fluctuated between 3 million and 17 million new infections per day between April, 2020, and October, 2021, peaking in mid-April, 2021, primarily as a result of surges in India. Between the start of the pandemic and Nov 14, 2021, there were an estimated 3·80 billion (95% uncertainty interval 3·44–4·08) total SARS-CoV-2 infections and reinfections combined, and an estimated 3·39 billion (3·08–3·63) individuals, or 43·9% (39·9–46·9) of the global population, had been infected one or more times. 1·34 billion (1·20–1·49) of these infections occurred in south Asia, the highest among the seven super-regions, although the sub-Saharan Africa super-region had the highest infection rate (79·3 per 100 population [69·0–86·4]). The high-income super-region had the fewest infections (239 million [226–252]), and southeast Asia, east Asia, and Oceania had the lowest infection rate (13·0 per 100 population [8·4–17·7]). The cumulative proportion of the population ever infected varied greatly between countries and territories, with rates higher than 70% in 40 countries and lower than 20% in 39 countries. There was no discernible relationship between Reffective and total immunity, and even at total immunity levels of 80%, we observed no indication of an abrupt drop in Reffective, indicating that there is not a clear herd immunity threshold observed in the data. COVID-19 has already had a staggering impact on the world up to the beginning of the omicron (B.1.1.529) wave, with over 40% of the global population infected at least once by Nov 14, 2021. The vast differences in cumulative proportion of the population infected across locations could help policy makers identify the transmission-prevention strategies that have been most effective, as well as the populations at greatest risk for future infection. This information might also be useful for targeted transmission-prevention interventions, including vaccine prioritisation. Our statistical approach to estimating SARS-CoV-2 infection allows estimates to be updated and disseminated rapidly on the basis of newly available data, which has and will be crucially important for timely COVID-19 research, science, and policy responses. Bill &amp; Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.</description><identifier>ISSN: 0140-6736</identifier><identifier>EISSN: 1474-547X</identifier><identifier>DOI: 10.1016/S0140-6736(22)00484-6</identifier><identifier>PMID: 35405084</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antibodies ; Charities ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 vaccines ; Design parameters ; Disease transmission ; Empirical analysis ; Estimates ; Fatalities ; Herd immunity ; Hospitalization ; Humans ; Immunity ; Infections ; Literature reviews ; Mathematical models ; Mortality ; Pandemics ; Population ; Prevention ; Robustness ; SARS-CoV-2 ; Seroepidemiologic Studies ; Serology ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Statistical models ; Surveys ; Time series ; Uncertainty ; Viral diseases</subject><ispartof>The Lancet (British edition), 2022-06, Vol.399 (10344), p.2351-2380</ispartof><rights>2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2022. The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. This work is published under https://creativecommons.org/licenses/by/3.0/ (theLicense”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-5305954608bf15668ca5cd79eccea2caaf970af71860cc83d775869fc4e69a6a3</citedby><cites>FETCH-LOGICAL-c547t-5305954608bf15668ca5cd79eccea2caaf970af71860cc83d775869fc4e69a6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0140673622004846$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35405084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barber, Ryan M</creatorcontrib><creatorcontrib>Sorensen, Reed J D</creatorcontrib><creatorcontrib>Pigott, David M</creatorcontrib><creatorcontrib>Bisignano, Catherine</creatorcontrib><creatorcontrib>Carter, Austin</creatorcontrib><creatorcontrib>Amlag, Joanne O</creatorcontrib><creatorcontrib>Collins, James K</creatorcontrib><creatorcontrib>Abbafati, Cristiana</creatorcontrib><creatorcontrib>Adolph, Christopher</creatorcontrib><creatorcontrib>Allorant, Adrien</creatorcontrib><creatorcontrib>Aravkin, Aleksandr Y</creatorcontrib><creatorcontrib>Bang-Jensen, Bree L</creatorcontrib><creatorcontrib>Castro, Emma</creatorcontrib><creatorcontrib>Chakrabarti, Suman</creatorcontrib><creatorcontrib>Cogen, Rebecca M</creatorcontrib><creatorcontrib>Combs, Emily</creatorcontrib><creatorcontrib>Comfort, Haley</creatorcontrib><creatorcontrib>Cooperrider, Kimberly</creatorcontrib><creatorcontrib>Dai, Xiaochen</creatorcontrib><creatorcontrib>Daoud, Farah</creatorcontrib><creatorcontrib>Deen, Amanda</creatorcontrib><creatorcontrib>Earl, Lucas</creatorcontrib><creatorcontrib>Erickson, Megan</creatorcontrib><creatorcontrib>Ewald, Samuel B</creatorcontrib><creatorcontrib>Ferrari, Alize J</creatorcontrib><creatorcontrib>Flaxman, Abraham D</creatorcontrib><creatorcontrib>Frostad, Joseph Jon</creatorcontrib><creatorcontrib>Fullman, Nancy</creatorcontrib><creatorcontrib>Giles, John R</creatorcontrib><creatorcontrib>Guo, Gaorui</creatorcontrib><creatorcontrib>He, Jiawei</creatorcontrib><creatorcontrib>Helak, Monika</creatorcontrib><creatorcontrib>Hulland, Erin N</creatorcontrib><creatorcontrib>Huntley, Bethany M</creatorcontrib><creatorcontrib>Lazzar-Atwood, Alice</creatorcontrib><creatorcontrib>LeGrand, Kate E</creatorcontrib><creatorcontrib>Lim, Stephen S</creatorcontrib><creatorcontrib>Lindstrom, Akiaja</creatorcontrib><creatorcontrib>Linebarger, Emily</creatorcontrib><creatorcontrib>Lozano, Rafael</creatorcontrib><creatorcontrib>Magistro, Beatrice</creatorcontrib><creatorcontrib>Malta, Deborah Carvalho</creatorcontrib><creatorcontrib>Månsson, Johan</creatorcontrib><creatorcontrib>Mantilla Herrera, Ana M</creatorcontrib><creatorcontrib>Mokdad, Ali H</creatorcontrib><creatorcontrib>Monasta, Lorenzo</creatorcontrib><creatorcontrib>Naghavi, Mohsen</creatorcontrib><creatorcontrib>Nomura, Shuhei</creatorcontrib><creatorcontrib>Odell, Christopher M</creatorcontrib><creatorcontrib>Olana, Latera Tesfaye</creatorcontrib><creatorcontrib>Ostroff, Samuel M</creatorcontrib><creatorcontrib>Pasovic, Maja</creatorcontrib><creatorcontrib>Pease, Spencer A</creatorcontrib><creatorcontrib>Reiner Jr, Robert C</creatorcontrib><creatorcontrib>Reinke, Grace</creatorcontrib><creatorcontrib>Ribeiro, Antonio Luiz P</creatorcontrib><creatorcontrib>Santomauro, Damian F</creatorcontrib><creatorcontrib>Sholokhov, Aleksei</creatorcontrib><creatorcontrib>Spurlock, Emma E</creatorcontrib><creatorcontrib>Syailendrawati, Ruri</creatorcontrib><creatorcontrib>Topor-Madry, Roman</creatorcontrib><creatorcontrib>Vo, Anh Truc</creatorcontrib><creatorcontrib>Vos, Theo</creatorcontrib><creatorcontrib>Walcott, Rebecca</creatorcontrib><creatorcontrib>Walker, Ally</creatorcontrib><creatorcontrib>Wiens, Kirsten E</creatorcontrib><creatorcontrib>Wiysonge, Charles Shey</creatorcontrib><creatorcontrib>Worku, Nahom Alemseged</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Hay, Simon I</creatorcontrib><creatorcontrib>Gakidou, Emmanuela</creatorcontrib><creatorcontrib>Murray, Christopher J L</creatorcontrib><creatorcontrib>COVID-19 Cumulative Infection Collaborators</creatorcontrib><title>Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis</title><title>The Lancet (British edition)</title><addtitle>Lancet</addtitle><description>Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases. We produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection–detection ratios (IDRs), infection–hospitalisation ratios (IHRs), and infection–fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportion of the population with one or more infections, and we then calculated posterior estimates of cumulative IDR, IHR, and IFR using cumulative infections and the corrected data on reported cases, hospitalisations, and deaths. Finally, we converted daily infections into a historical time series of Reffective by location and day based on assumptions of duration from infection to infectiousness and time an individual spent being infectious. For each of these quantities, we estimated a distribution based on an ensemble framework that captured uncertainty in data sources, model design, and parameter assumptions. Global daily SARS-CoV-2 infections fluctuated between 3 million and 17 million new infections per day between April, 2020, and October, 2021, peaking in mid-April, 2021, primarily as a result of surges in India. Between the start of the pandemic and Nov 14, 2021, there were an estimated 3·80 billion (95% uncertainty interval 3·44–4·08) total SARS-CoV-2 infections and reinfections combined, and an estimated 3·39 billion (3·08–3·63) individuals, or 43·9% (39·9–46·9) of the global population, had been infected one or more times. 1·34 billion (1·20–1·49) of these infections occurred in south Asia, the highest among the seven super-regions, although the sub-Saharan Africa super-region had the highest infection rate (79·3 per 100 population [69·0–86·4]). The high-income super-region had the fewest infections (239 million [226–252]), and southeast Asia, east Asia, and Oceania had the lowest infection rate (13·0 per 100 population [8·4–17·7]). The cumulative proportion of the population ever infected varied greatly between countries and territories, with rates higher than 70% in 40 countries and lower than 20% in 39 countries. There was no discernible relationship between Reffective and total immunity, and even at total immunity levels of 80%, we observed no indication of an abrupt drop in Reffective, indicating that there is not a clear herd immunity threshold observed in the data. COVID-19 has already had a staggering impact on the world up to the beginning of the omicron (B.1.1.529) wave, with over 40% of the global population infected at least once by Nov 14, 2021. The vast differences in cumulative proportion of the population infected across locations could help policy makers identify the transmission-prevention strategies that have been most effective, as well as the populations at greatest risk for future infection. This information might also be useful for targeted transmission-prevention interventions, including vaccine prioritisation. Our statistical approach to estimating SARS-CoV-2 infection allows estimates to be updated and disseminated rapidly on the basis of newly available data, which has and will be crucially important for timely COVID-19 research, science, and policy responses. Bill &amp; Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.</description><subject>Antibodies</subject><subject>Charities</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 vaccines</subject><subject>Design parameters</subject><subject>Disease transmission</subject><subject>Empirical analysis</subject><subject>Estimates</subject><subject>Fatalities</subject><subject>Herd immunity</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Immunity</subject><subject>Infections</subject><subject>Literature reviews</subject><subject>Mathematical models</subject><subject>Mortality</subject><subject>Pandemics</subject><subject>Population</subject><subject>Prevention</subject><subject>Robustness</subject><subject>SARS-CoV-2</subject><subject>Seroepidemiologic Studies</subject><subject>Serology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Surveys</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Viral diseases</subject><issn>0140-6736</issn><issn>1474-547X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9uEzEQxi1ERUPhEUCWuBSpC7bXfzmAqqi0lSqQCCBuluP1blxt7GLvBuUFeG68SYmACyfbM7_5xjMfAM8weoUR5q8XCFNUcVHzU0JeIkQlrfgDMMNU0IpR8e0hmB2QY_A451tUKI7YI3BcM4oYknQGfl7kwa_N4EMHuz4uTX8Gk-t8DNPNhAaGkpxesDG-3-5CdlyPfQlvHPShdXYCMvzhhxVcnH9aVPP4tSJwWKU4div4IW4gpmeQIILfQAPzUEpLV1s0TRHeZp-fgKPW9Nk9vT9PwJf3F5_nV9XNx8vr-flNZctIQ8VqxBQrQ8hlixnn0hpmG6Gctc4Qa0yrBDKtwJIja2XdCMEkV62ljivDTX0C3u5178bl2jXWhSGZXt-lsoO01dF4_Xcm-JXu4kZLpWrMRBE4vRdI8fvo8qDXPlvX9ya4OGZNOFVM1YKSgr74B72NYyoDT5REWNUIT4JsT9kUc06uPXwGIz05rXdO68lGTYjeOa15qXv-5ySHqt_WFuDdHnBlnxvvks7Wu2Bd41OxTDfR_6fFL2uKuLQ</recordid><startdate>20220625</startdate><enddate>20220625</enddate><creator>Barber, Ryan M</creator><creator>Sorensen, Reed J D</creator><creator>Pigott, David M</creator><creator>Bisignano, Catherine</creator><creator>Carter, Austin</creator><creator>Amlag, Joanne O</creator><creator>Collins, James K</creator><creator>Abbafati, Cristiana</creator><creator>Adolph, Christopher</creator><creator>Allorant, Adrien</creator><creator>Aravkin, Aleksandr Y</creator><creator>Bang-Jensen, Bree L</creator><creator>Castro, Emma</creator><creator>Chakrabarti, Suman</creator><creator>Cogen, Rebecca M</creator><creator>Combs, Emily</creator><creator>Comfort, Haley</creator><creator>Cooperrider, Kimberly</creator><creator>Dai, Xiaochen</creator><creator>Daoud, Farah</creator><creator>Deen, Amanda</creator><creator>Earl, Lucas</creator><creator>Erickson, Megan</creator><creator>Ewald, Samuel B</creator><creator>Ferrari, Alize J</creator><creator>Flaxman, Abraham D</creator><creator>Frostad, Joseph Jon</creator><creator>Fullman, Nancy</creator><creator>Giles, John R</creator><creator>Guo, Gaorui</creator><creator>He, Jiawei</creator><creator>Helak, Monika</creator><creator>Hulland, Erin N</creator><creator>Huntley, Bethany M</creator><creator>Lazzar-Atwood, Alice</creator><creator>LeGrand, Kate E</creator><creator>Lim, Stephen S</creator><creator>Lindstrom, Akiaja</creator><creator>Linebarger, Emily</creator><creator>Lozano, Rafael</creator><creator>Magistro, Beatrice</creator><creator>Malta, Deborah Carvalho</creator><creator>Månsson, Johan</creator><creator>Mantilla Herrera, Ana M</creator><creator>Mokdad, Ali H</creator><creator>Monasta, Lorenzo</creator><creator>Naghavi, Mohsen</creator><creator>Nomura, Shuhei</creator><creator>Odell, Christopher M</creator><creator>Olana, Latera Tesfaye</creator><creator>Ostroff, Samuel M</creator><creator>Pasovic, Maja</creator><creator>Pease, Spencer A</creator><creator>Reiner Jr, Robert C</creator><creator>Reinke, Grace</creator><creator>Ribeiro, Antonio Luiz P</creator><creator>Santomauro, Damian F</creator><creator>Sholokhov, Aleksei</creator><creator>Spurlock, Emma E</creator><creator>Syailendrawati, Ruri</creator><creator>Topor-Madry, Roman</creator><creator>Vo, Anh Truc</creator><creator>Vos, Theo</creator><creator>Walcott, Rebecca</creator><creator>Walker, Ally</creator><creator>Wiens, Kirsten E</creator><creator>Wiysonge, Charles Shey</creator><creator>Worku, Nahom Alemseged</creator><creator>Zheng, Peng</creator><creator>Hay, Simon I</creator><creator>Gakidou, Emmanuela</creator><creator>Murray, Christopher J L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TT</scope><scope>0TZ</scope><scope>0U~</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88C</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8C2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>KB~</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220625</creationdate><title>Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis</title><author>Barber, Ryan M ; Sorensen, Reed J D ; Pigott, David M ; Bisignano, Catherine ; Carter, Austin ; Amlag, Joanne O ; Collins, James K ; Abbafati, Cristiana ; Adolph, Christopher ; Allorant, Adrien ; Aravkin, Aleksandr Y ; Bang-Jensen, Bree L ; Castro, Emma ; Chakrabarti, Suman ; Cogen, Rebecca M ; Combs, Emily ; Comfort, Haley ; Cooperrider, Kimberly ; Dai, Xiaochen ; Daoud, Farah ; Deen, Amanda ; Earl, Lucas ; Erickson, Megan ; Ewald, Samuel B ; Ferrari, Alize J ; Flaxman, Abraham D ; Frostad, Joseph Jon ; Fullman, Nancy ; Giles, John R ; Guo, Gaorui ; He, Jiawei ; Helak, Monika ; Hulland, Erin N ; Huntley, Bethany M ; Lazzar-Atwood, Alice ; LeGrand, Kate E ; Lim, Stephen S ; Lindstrom, Akiaja ; Linebarger, Emily ; Lozano, Rafael ; Magistro, Beatrice ; Malta, Deborah Carvalho ; Månsson, Johan ; Mantilla Herrera, Ana M ; Mokdad, Ali H ; Monasta, Lorenzo ; Naghavi, Mohsen ; Nomura, Shuhei ; Odell, Christopher M ; Olana, Latera Tesfaye ; Ostroff, Samuel M ; Pasovic, Maja ; Pease, Spencer A ; Reiner Jr, Robert C ; Reinke, Grace ; Ribeiro, Antonio Luiz P ; Santomauro, Damian F ; Sholokhov, Aleksei ; Spurlock, Emma E ; Syailendrawati, Ruri ; Topor-Madry, Roman ; Vo, Anh Truc ; Vos, Theo ; Walcott, Rebecca ; Walker, Ally ; Wiens, Kirsten E ; Wiysonge, Charles Shey ; Worku, Nahom Alemseged ; Zheng, Peng ; Hay, Simon I ; Gakidou, Emmanuela ; Murray, Christopher J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-5305954608bf15668ca5cd79eccea2caaf970af71860cc83d775869fc4e69a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibodies</topic><topic>Charities</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 vaccines</topic><topic>Design parameters</topic><topic>Disease transmission</topic><topic>Empirical analysis</topic><topic>Estimates</topic><topic>Fatalities</topic><topic>Herd immunity</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Immunity</topic><topic>Infections</topic><topic>Literature reviews</topic><topic>Mathematical models</topic><topic>Mortality</topic><topic>Pandemics</topic><topic>Population</topic><topic>Prevention</topic><topic>Robustness</topic><topic>SARS-CoV-2</topic><topic>Seroepidemiologic Studies</topic><topic>Serology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Surveys</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barber, Ryan M</creatorcontrib><creatorcontrib>Sorensen, Reed J D</creatorcontrib><creatorcontrib>Pigott, David M</creatorcontrib><creatorcontrib>Bisignano, Catherine</creatorcontrib><creatorcontrib>Carter, Austin</creatorcontrib><creatorcontrib>Amlag, Joanne O</creatorcontrib><creatorcontrib>Collins, James K</creatorcontrib><creatorcontrib>Abbafati, Cristiana</creatorcontrib><creatorcontrib>Adolph, Christopher</creatorcontrib><creatorcontrib>Allorant, Adrien</creatorcontrib><creatorcontrib>Aravkin, Aleksandr Y</creatorcontrib><creatorcontrib>Bang-Jensen, Bree L</creatorcontrib><creatorcontrib>Castro, Emma</creatorcontrib><creatorcontrib>Chakrabarti, Suman</creatorcontrib><creatorcontrib>Cogen, Rebecca M</creatorcontrib><creatorcontrib>Combs, Emily</creatorcontrib><creatorcontrib>Comfort, Haley</creatorcontrib><creatorcontrib>Cooperrider, Kimberly</creatorcontrib><creatorcontrib>Dai, Xiaochen</creatorcontrib><creatorcontrib>Daoud, Farah</creatorcontrib><creatorcontrib>Deen, Amanda</creatorcontrib><creatorcontrib>Earl, Lucas</creatorcontrib><creatorcontrib>Erickson, Megan</creatorcontrib><creatorcontrib>Ewald, Samuel B</creatorcontrib><creatorcontrib>Ferrari, Alize J</creatorcontrib><creatorcontrib>Flaxman, Abraham D</creatorcontrib><creatorcontrib>Frostad, Joseph Jon</creatorcontrib><creatorcontrib>Fullman, Nancy</creatorcontrib><creatorcontrib>Giles, John R</creatorcontrib><creatorcontrib>Guo, Gaorui</creatorcontrib><creatorcontrib>He, Jiawei</creatorcontrib><creatorcontrib>Helak, Monika</creatorcontrib><creatorcontrib>Hulland, Erin N</creatorcontrib><creatorcontrib>Huntley, Bethany M</creatorcontrib><creatorcontrib>Lazzar-Atwood, Alice</creatorcontrib><creatorcontrib>LeGrand, Kate E</creatorcontrib><creatorcontrib>Lim, Stephen S</creatorcontrib><creatorcontrib>Lindstrom, Akiaja</creatorcontrib><creatorcontrib>Linebarger, Emily</creatorcontrib><creatorcontrib>Lozano, Rafael</creatorcontrib><creatorcontrib>Magistro, Beatrice</creatorcontrib><creatorcontrib>Malta, Deborah Carvalho</creatorcontrib><creatorcontrib>Månsson, Johan</creatorcontrib><creatorcontrib>Mantilla Herrera, Ana M</creatorcontrib><creatorcontrib>Mokdad, Ali H</creatorcontrib><creatorcontrib>Monasta, Lorenzo</creatorcontrib><creatorcontrib>Naghavi, Mohsen</creatorcontrib><creatorcontrib>Nomura, Shuhei</creatorcontrib><creatorcontrib>Odell, Christopher M</creatorcontrib><creatorcontrib>Olana, Latera Tesfaye</creatorcontrib><creatorcontrib>Ostroff, Samuel M</creatorcontrib><creatorcontrib>Pasovic, Maja</creatorcontrib><creatorcontrib>Pease, Spencer A</creatorcontrib><creatorcontrib>Reiner Jr, Robert C</creatorcontrib><creatorcontrib>Reinke, Grace</creatorcontrib><creatorcontrib>Ribeiro, Antonio Luiz P</creatorcontrib><creatorcontrib>Santomauro, Damian F</creatorcontrib><creatorcontrib>Sholokhov, Aleksei</creatorcontrib><creatorcontrib>Spurlock, Emma E</creatorcontrib><creatorcontrib>Syailendrawati, Ruri</creatorcontrib><creatorcontrib>Topor-Madry, Roman</creatorcontrib><creatorcontrib>Vo, Anh Truc</creatorcontrib><creatorcontrib>Vos, Theo</creatorcontrib><creatorcontrib>Walcott, Rebecca</creatorcontrib><creatorcontrib>Walker, Ally</creatorcontrib><creatorcontrib>Wiens, Kirsten E</creatorcontrib><creatorcontrib>Wiysonge, Charles Shey</creatorcontrib><creatorcontrib>Worku, Nahom Alemseged</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Hay, Simon I</creatorcontrib><creatorcontrib>Gakidou, Emmanuela</creatorcontrib><creatorcontrib>Murray, Christopher J L</creatorcontrib><creatorcontrib>COVID-19 Cumulative Infection Collaborators</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>News PRO</collection><collection>Pharma and Biotech Premium PRO</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Lancet Titles</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Newsstand Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet (British edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barber, Ryan M</au><au>Sorensen, Reed J D</au><au>Pigott, David M</au><au>Bisignano, Catherine</au><au>Carter, Austin</au><au>Amlag, Joanne O</au><au>Collins, James K</au><au>Abbafati, Cristiana</au><au>Adolph, Christopher</au><au>Allorant, Adrien</au><au>Aravkin, Aleksandr Y</au><au>Bang-Jensen, Bree L</au><au>Castro, Emma</au><au>Chakrabarti, Suman</au><au>Cogen, Rebecca M</au><au>Combs, Emily</au><au>Comfort, Haley</au><au>Cooperrider, Kimberly</au><au>Dai, Xiaochen</au><au>Daoud, Farah</au><au>Deen, Amanda</au><au>Earl, Lucas</au><au>Erickson, Megan</au><au>Ewald, Samuel B</au><au>Ferrari, Alize J</au><au>Flaxman, Abraham D</au><au>Frostad, Joseph Jon</au><au>Fullman, Nancy</au><au>Giles, John R</au><au>Guo, Gaorui</au><au>He, Jiawei</au><au>Helak, Monika</au><au>Hulland, Erin N</au><au>Huntley, Bethany M</au><au>Lazzar-Atwood, Alice</au><au>LeGrand, Kate E</au><au>Lim, Stephen S</au><au>Lindstrom, Akiaja</au><au>Linebarger, Emily</au><au>Lozano, Rafael</au><au>Magistro, Beatrice</au><au>Malta, Deborah Carvalho</au><au>Månsson, Johan</au><au>Mantilla Herrera, Ana M</au><au>Mokdad, Ali H</au><au>Monasta, Lorenzo</au><au>Naghavi, Mohsen</au><au>Nomura, Shuhei</au><au>Odell, Christopher M</au><au>Olana, Latera Tesfaye</au><au>Ostroff, Samuel M</au><au>Pasovic, Maja</au><au>Pease, Spencer A</au><au>Reiner Jr, Robert C</au><au>Reinke, Grace</au><au>Ribeiro, Antonio Luiz P</au><au>Santomauro, Damian F</au><au>Sholokhov, Aleksei</au><au>Spurlock, Emma E</au><au>Syailendrawati, Ruri</au><au>Topor-Madry, Roman</au><au>Vo, Anh Truc</au><au>Vos, Theo</au><au>Walcott, Rebecca</au><au>Walker, Ally</au><au>Wiens, Kirsten E</au><au>Wiysonge, Charles Shey</au><au>Worku, Nahom Alemseged</au><au>Zheng, Peng</au><au>Hay, Simon I</au><au>Gakidou, Emmanuela</au><au>Murray, Christopher J L</au><aucorp>COVID-19 Cumulative Infection Collaborators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis</atitle><jtitle>The Lancet (British edition)</jtitle><addtitle>Lancet</addtitle><date>2022-06-25</date><risdate>2022</risdate><volume>399</volume><issue>10344</issue><spage>2351</spage><epage>2380</epage><pages>2351-2380</pages><issn>0140-6736</issn><eissn>1474-547X</eissn><abstract>Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases. We produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection–detection ratios (IDRs), infection–hospitalisation ratios (IHRs), and infection–fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportion of the population with one or more infections, and we then calculated posterior estimates of cumulative IDR, IHR, and IFR using cumulative infections and the corrected data on reported cases, hospitalisations, and deaths. Finally, we converted daily infections into a historical time series of Reffective by location and day based on assumptions of duration from infection to infectiousness and time an individual spent being infectious. For each of these quantities, we estimated a distribution based on an ensemble framework that captured uncertainty in data sources, model design, and parameter assumptions. Global daily SARS-CoV-2 infections fluctuated between 3 million and 17 million new infections per day between April, 2020, and October, 2021, peaking in mid-April, 2021, primarily as a result of surges in India. Between the start of the pandemic and Nov 14, 2021, there were an estimated 3·80 billion (95% uncertainty interval 3·44–4·08) total SARS-CoV-2 infections and reinfections combined, and an estimated 3·39 billion (3·08–3·63) individuals, or 43·9% (39·9–46·9) of the global population, had been infected one or more times. 1·34 billion (1·20–1·49) of these infections occurred in south Asia, the highest among the seven super-regions, although the sub-Saharan Africa super-region had the highest infection rate (79·3 per 100 population [69·0–86·4]). The high-income super-region had the fewest infections (239 million [226–252]), and southeast Asia, east Asia, and Oceania had the lowest infection rate (13·0 per 100 population [8·4–17·7]). The cumulative proportion of the population ever infected varied greatly between countries and territories, with rates higher than 70% in 40 countries and lower than 20% in 39 countries. There was no discernible relationship between Reffective and total immunity, and even at total immunity levels of 80%, we observed no indication of an abrupt drop in Reffective, indicating that there is not a clear herd immunity threshold observed in the data. COVID-19 has already had a staggering impact on the world up to the beginning of the omicron (B.1.1.529) wave, with over 40% of the global population infected at least once by Nov 14, 2021. The vast differences in cumulative proportion of the population infected across locations could help policy makers identify the transmission-prevention strategies that have been most effective, as well as the populations at greatest risk for future infection. This information might also be useful for targeted transmission-prevention interventions, including vaccine prioritisation. Our statistical approach to estimating SARS-CoV-2 infection allows estimates to be updated and disseminated rapidly on the basis of newly available data, which has and will be crucially important for timely COVID-19 research, science, and policy responses. Bill &amp; Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35405084</pmid><doi>10.1016/S0140-6736(22)00484-6</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-6736
ispartof The Lancet (British edition), 2022-06, Vol.399 (10344), p.2351-2380
issn 0140-6736
1474-547X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993157
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antibodies
Charities
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 vaccines
Design parameters
Disease transmission
Empirical analysis
Estimates
Fatalities
Herd immunity
Hospitalization
Humans
Immunity
Infections
Literature reviews
Mathematical models
Mortality
Pandemics
Population
Prevention
Robustness
SARS-CoV-2
Seroepidemiologic Studies
Serology
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
Statistical models
Surveys
Time series
Uncertainty
Viral diseases
title Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20global,%20regional,%20and%20national%20daily%20and%20cumulative%20infections%20with%20SARS-CoV-2%20through%20Nov%2014,%202021:%20a%20statistical%20analysis&rft.jtitle=The%20Lancet%20(British%20edition)&rft.au=Barber,%20Ryan%20M&rft.aucorp=COVID-19%20Cumulative%20Infection%20Collaborators&rft.date=2022-06-25&rft.volume=399&rft.issue=10344&rft.spage=2351&rft.epage=2380&rft.pages=2351-2380&rft.issn=0140-6736&rft.eissn=1474-547X&rft_id=info:doi/10.1016/S0140-6736(22)00484-6&rft_dat=%3Cproquest_pubme%3E2649593742%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680193017&rft_id=info:pmid/35405084&rft_els_id=S0140673622004846&rfr_iscdi=true