Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair

DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR cancer 2022-06, Vol.4 (2), p.zcac013-zcac013
Hauptverfasser: Sherill-Rofe, Dana, Raban, Oded, Findlay, Steven, Rahat, Dolev, Unterman, Irene, Samiei, Arash, Yasmeen, Amber, Kaiser, Zafir, Kuasne, Hellen, Park, Morag, Foulkes, William D, Bloch, Idit, Zick, Aviad, Gotlieb, Walter H, Tabach, Yuval, Orthwein, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page zcac013
container_issue 2
container_start_page zcac013
container_title NAR cancer
container_volume 4
creator Sherill-Rofe, Dana
Raban, Oded
Findlay, Steven
Rahat, Dolev
Unterman, Irene
Samiei, Arash
Yasmeen, Amber
Kaiser, Zafir
Kuasne, Hellen
Park, Morag
Foulkes, William D
Bloch, Idit
Zick, Aviad
Gotlieb, Walter H
Tabach, Yuval
Orthwein, Alexandre
description DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).
doi_str_mv 10.1093/narcan/zcac013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649254609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</originalsourceid><addsrcrecordid>eNpVkUlPHDEQha0IFBBwzRH5yKXBS2--ICFCFomECzlb1e7yYHDbE9uNNPz6NJoJglOVVK9eLR8hXzg750zJiwDJQLh4MWAYl5_IoWilqPq2q_fe5QfkJOdHxphouBC8_UwOZCOV4n1zSOZfsy-uipMzmY5QgLpQcJWguBgoBPCb7DJ1I4birMNMywPSvPbOYMxxQgqZAn3CDU24mj2UmGi09OvvKzrGefBY5ZIgjHRICE-LaA0uHZN9Cz7jyS4ekT_fbu6vf1S3d99_Xl_dVkYqVirbMSOsasFww5XtR9NJMXRcQds1nbCCd7WqgfFmAIBOAIjRqMYwVHbAQckjcrn1Xc_DhKNZjkjg9Tq5CdJGR3D6YyW4B72Kz7pf3qPafjE42xmk-HfGXPTkskHvIWCcsxZtrURTt-x11vlWalLMOaF9G8OZfsWlt7j0DtfScPp-uTf5fzjyH_aOlrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649254609</pqid></control><display><type>article</type><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</creator><creatorcontrib>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</creatorcontrib><description>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</description><identifier>ISSN: 2632-8674</identifier><identifier>EISSN: 2632-8674</identifier><identifier>DOI: 10.1093/narcan/zcac013</identifier><identifier>PMID: 35399185</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer Computational Biology</subject><ispartof>NAR cancer, 2022-06, Vol.4 (2), p.zcac013-zcac013</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</citedby><cites>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</cites><orcidid>0000-0001-9521-3217 ; 0000-0002-5077-9249 ; 0000-0002-7350-3413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35399185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherill-Rofe, Dana</creatorcontrib><creatorcontrib>Raban, Oded</creatorcontrib><creatorcontrib>Findlay, Steven</creatorcontrib><creatorcontrib>Rahat, Dolev</creatorcontrib><creatorcontrib>Unterman, Irene</creatorcontrib><creatorcontrib>Samiei, Arash</creatorcontrib><creatorcontrib>Yasmeen, Amber</creatorcontrib><creatorcontrib>Kaiser, Zafir</creatorcontrib><creatorcontrib>Kuasne, Hellen</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Foulkes, William D</creatorcontrib><creatorcontrib>Bloch, Idit</creatorcontrib><creatorcontrib>Zick, Aviad</creatorcontrib><creatorcontrib>Gotlieb, Walter H</creatorcontrib><creatorcontrib>Tabach, Yuval</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><title>NAR cancer</title><addtitle>NAR Cancer</addtitle><description>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</description><subject>Cancer Computational Biology</subject><issn>2632-8674</issn><issn>2632-8674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkUlPHDEQha0IFBBwzRH5yKXBS2--ICFCFomECzlb1e7yYHDbE9uNNPz6NJoJglOVVK9eLR8hXzg750zJiwDJQLh4MWAYl5_IoWilqPq2q_fe5QfkJOdHxphouBC8_UwOZCOV4n1zSOZfsy-uipMzmY5QgLpQcJWguBgoBPCb7DJ1I4birMNMywPSvPbOYMxxQgqZAn3CDU24mj2UmGi09OvvKzrGefBY5ZIgjHRICE-LaA0uHZN9Cz7jyS4ekT_fbu6vf1S3d99_Xl_dVkYqVirbMSOsasFww5XtR9NJMXRcQds1nbCCd7WqgfFmAIBOAIjRqMYwVHbAQckjcrn1Xc_DhKNZjkjg9Tq5CdJGR3D6YyW4B72Kz7pf3qPafjE42xmk-HfGXPTkskHvIWCcsxZtrURTt-x11vlWalLMOaF9G8OZfsWlt7j0DtfScPp-uTf5fzjyH_aOlrc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Sherill-Rofe, Dana</creator><creator>Raban, Oded</creator><creator>Findlay, Steven</creator><creator>Rahat, Dolev</creator><creator>Unterman, Irene</creator><creator>Samiei, Arash</creator><creator>Yasmeen, Amber</creator><creator>Kaiser, Zafir</creator><creator>Kuasne, Hellen</creator><creator>Park, Morag</creator><creator>Foulkes, William D</creator><creator>Bloch, Idit</creator><creator>Zick, Aviad</creator><creator>Gotlieb, Walter H</creator><creator>Tabach, Yuval</creator><creator>Orthwein, Alexandre</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9521-3217</orcidid><orcidid>https://orcid.org/0000-0002-5077-9249</orcidid><orcidid>https://orcid.org/0000-0002-7350-3413</orcidid></search><sort><creationdate>20220601</creationdate><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><author>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer Computational Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherill-Rofe, Dana</creatorcontrib><creatorcontrib>Raban, Oded</creatorcontrib><creatorcontrib>Findlay, Steven</creatorcontrib><creatorcontrib>Rahat, Dolev</creatorcontrib><creatorcontrib>Unterman, Irene</creatorcontrib><creatorcontrib>Samiei, Arash</creatorcontrib><creatorcontrib>Yasmeen, Amber</creatorcontrib><creatorcontrib>Kaiser, Zafir</creatorcontrib><creatorcontrib>Kuasne, Hellen</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Foulkes, William D</creatorcontrib><creatorcontrib>Bloch, Idit</creatorcontrib><creatorcontrib>Zick, Aviad</creatorcontrib><creatorcontrib>Gotlieb, Walter H</creatorcontrib><creatorcontrib>Tabach, Yuval</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherill-Rofe, Dana</au><au>Raban, Oded</au><au>Findlay, Steven</au><au>Rahat, Dolev</au><au>Unterman, Irene</au><au>Samiei, Arash</au><au>Yasmeen, Amber</au><au>Kaiser, Zafir</au><au>Kuasne, Hellen</au><au>Park, Morag</au><au>Foulkes, William D</au><au>Bloch, Idit</au><au>Zick, Aviad</au><au>Gotlieb, Walter H</au><au>Tabach, Yuval</au><au>Orthwein, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</atitle><jtitle>NAR cancer</jtitle><addtitle>NAR Cancer</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>zcac013</spage><epage>zcac013</epage><pages>zcac013-zcac013</pages><issn>2632-8674</issn><eissn>2632-8674</eissn><abstract>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35399185</pmid><doi>10.1093/narcan/zcac013</doi><orcidid>https://orcid.org/0000-0001-9521-3217</orcidid><orcidid>https://orcid.org/0000-0002-5077-9249</orcidid><orcidid>https://orcid.org/0000-0002-7350-3413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-8674
ispartof NAR cancer, 2022-06, Vol.4 (2), p.zcac013-zcac013
issn 2632-8674
2632-8674
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991968
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central
subjects Cancer Computational Biology
title Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omics%20data%20integration%20analysis%20identifies%20the%20spliceosome%20as%20a%20key%20regulator%20of%20DNA%20double-strand%20break%20repair&rft.jtitle=NAR%20cancer&rft.au=Sherill-Rofe,%20Dana&rft.date=2022-06-01&rft.volume=4&rft.issue=2&rft.spage=zcac013&rft.epage=zcac013&rft.pages=zcac013-zcac013&rft.issn=2632-8674&rft.eissn=2632-8674&rft_id=info:doi/10.1093/narcan/zcac013&rft_dat=%3Cproquest_pubme%3E2649254609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649254609&rft_id=info:pmid/35399185&rfr_iscdi=true