Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair
DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functional...
Gespeichert in:
Veröffentlicht in: | NAR cancer 2022-06, Vol.4 (2), p.zcac013-zcac013 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | zcac013 |
---|---|
container_issue | 2 |
container_start_page | zcac013 |
container_title | NAR cancer |
container_volume | 4 |
creator | Sherill-Rofe, Dana Raban, Oded Findlay, Steven Rahat, Dolev Unterman, Irene Samiei, Arash Yasmeen, Amber Kaiser, Zafir Kuasne, Hellen Park, Morag Foulkes, William D Bloch, Idit Zick, Aviad Gotlieb, Walter H Tabach, Yuval Orthwein, Alexandre |
description | DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs). |
doi_str_mv | 10.1093/narcan/zcac013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649254609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</originalsourceid><addsrcrecordid>eNpVkUlPHDEQha0IFBBwzRH5yKXBS2--ICFCFomECzlb1e7yYHDbE9uNNPz6NJoJglOVVK9eLR8hXzg750zJiwDJQLh4MWAYl5_IoWilqPq2q_fe5QfkJOdHxphouBC8_UwOZCOV4n1zSOZfsy-uipMzmY5QgLpQcJWguBgoBPCb7DJ1I4birMNMywPSvPbOYMxxQgqZAn3CDU24mj2UmGi09OvvKzrGefBY5ZIgjHRICE-LaA0uHZN9Cz7jyS4ekT_fbu6vf1S3d99_Xl_dVkYqVirbMSOsasFww5XtR9NJMXRcQds1nbCCd7WqgfFmAIBOAIjRqMYwVHbAQckjcrn1Xc_DhKNZjkjg9Tq5CdJGR3D6YyW4B72Kz7pf3qPafjE42xmk-HfGXPTkskHvIWCcsxZtrURTt-x11vlWalLMOaF9G8OZfsWlt7j0DtfScPp-uTf5fzjyH_aOlrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649254609</pqid></control><display><type>article</type><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</creator><creatorcontrib>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</creatorcontrib><description>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</description><identifier>ISSN: 2632-8674</identifier><identifier>EISSN: 2632-8674</identifier><identifier>DOI: 10.1093/narcan/zcac013</identifier><identifier>PMID: 35399185</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer Computational Biology</subject><ispartof>NAR cancer, 2022-06, Vol.4 (2), p.zcac013-zcac013</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of NAR Cancer. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</citedby><cites>FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</cites><orcidid>0000-0001-9521-3217 ; 0000-0002-5077-9249 ; 0000-0002-7350-3413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35399185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherill-Rofe, Dana</creatorcontrib><creatorcontrib>Raban, Oded</creatorcontrib><creatorcontrib>Findlay, Steven</creatorcontrib><creatorcontrib>Rahat, Dolev</creatorcontrib><creatorcontrib>Unterman, Irene</creatorcontrib><creatorcontrib>Samiei, Arash</creatorcontrib><creatorcontrib>Yasmeen, Amber</creatorcontrib><creatorcontrib>Kaiser, Zafir</creatorcontrib><creatorcontrib>Kuasne, Hellen</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Foulkes, William D</creatorcontrib><creatorcontrib>Bloch, Idit</creatorcontrib><creatorcontrib>Zick, Aviad</creatorcontrib><creatorcontrib>Gotlieb, Walter H</creatorcontrib><creatorcontrib>Tabach, Yuval</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><title>NAR cancer</title><addtitle>NAR Cancer</addtitle><description>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</description><subject>Cancer Computational Biology</subject><issn>2632-8674</issn><issn>2632-8674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkUlPHDEQha0IFBBwzRH5yKXBS2--ICFCFomECzlb1e7yYHDbE9uNNPz6NJoJglOVVK9eLR8hXzg750zJiwDJQLh4MWAYl5_IoWilqPq2q_fe5QfkJOdHxphouBC8_UwOZCOV4n1zSOZfsy-uipMzmY5QgLpQcJWguBgoBPCb7DJ1I4birMNMywPSvPbOYMxxQgqZAn3CDU24mj2UmGi09OvvKzrGefBY5ZIgjHRICE-LaA0uHZN9Cz7jyS4ekT_fbu6vf1S3d99_Xl_dVkYqVirbMSOsasFww5XtR9NJMXRcQds1nbCCd7WqgfFmAIBOAIjRqMYwVHbAQckjcrn1Xc_DhKNZjkjg9Tq5CdJGR3D6YyW4B72Kz7pf3qPafjE42xmk-HfGXPTkskHvIWCcsxZtrURTt-x11vlWalLMOaF9G8OZfsWlt7j0DtfScPp-uTf5fzjyH_aOlrc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Sherill-Rofe, Dana</creator><creator>Raban, Oded</creator><creator>Findlay, Steven</creator><creator>Rahat, Dolev</creator><creator>Unterman, Irene</creator><creator>Samiei, Arash</creator><creator>Yasmeen, Amber</creator><creator>Kaiser, Zafir</creator><creator>Kuasne, Hellen</creator><creator>Park, Morag</creator><creator>Foulkes, William D</creator><creator>Bloch, Idit</creator><creator>Zick, Aviad</creator><creator>Gotlieb, Walter H</creator><creator>Tabach, Yuval</creator><creator>Orthwein, Alexandre</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9521-3217</orcidid><orcidid>https://orcid.org/0000-0002-5077-9249</orcidid><orcidid>https://orcid.org/0000-0002-7350-3413</orcidid></search><sort><creationdate>20220601</creationdate><title>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</title><author>Sherill-Rofe, Dana ; Raban, Oded ; Findlay, Steven ; Rahat, Dolev ; Unterman, Irene ; Samiei, Arash ; Yasmeen, Amber ; Kaiser, Zafir ; Kuasne, Hellen ; Park, Morag ; Foulkes, William D ; Bloch, Idit ; Zick, Aviad ; Gotlieb, Walter H ; Tabach, Yuval ; Orthwein, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f70c2f96ac1c19f8dc732b719a67572f217494a015baaa72aa2dc95c0e9fbeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer Computational Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherill-Rofe, Dana</creatorcontrib><creatorcontrib>Raban, Oded</creatorcontrib><creatorcontrib>Findlay, Steven</creatorcontrib><creatorcontrib>Rahat, Dolev</creatorcontrib><creatorcontrib>Unterman, Irene</creatorcontrib><creatorcontrib>Samiei, Arash</creatorcontrib><creatorcontrib>Yasmeen, Amber</creatorcontrib><creatorcontrib>Kaiser, Zafir</creatorcontrib><creatorcontrib>Kuasne, Hellen</creatorcontrib><creatorcontrib>Park, Morag</creatorcontrib><creatorcontrib>Foulkes, William D</creatorcontrib><creatorcontrib>Bloch, Idit</creatorcontrib><creatorcontrib>Zick, Aviad</creatorcontrib><creatorcontrib>Gotlieb, Walter H</creatorcontrib><creatorcontrib>Tabach, Yuval</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherill-Rofe, Dana</au><au>Raban, Oded</au><au>Findlay, Steven</au><au>Rahat, Dolev</au><au>Unterman, Irene</au><au>Samiei, Arash</au><au>Yasmeen, Amber</au><au>Kaiser, Zafir</au><au>Kuasne, Hellen</au><au>Park, Morag</au><au>Foulkes, William D</au><au>Bloch, Idit</au><au>Zick, Aviad</au><au>Gotlieb, Walter H</au><au>Tabach, Yuval</au><au>Orthwein, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair</atitle><jtitle>NAR cancer</jtitle><addtitle>NAR Cancer</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>zcac013</spage><epage>zcac013</epage><pages>zcac013-zcac013</pages><issn>2632-8674</issn><eissn>2632-8674</eissn><abstract>DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35399185</pmid><doi>10.1093/narcan/zcac013</doi><orcidid>https://orcid.org/0000-0001-9521-3217</orcidid><orcidid>https://orcid.org/0000-0002-5077-9249</orcidid><orcidid>https://orcid.org/0000-0002-7350-3413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-8674 |
ispartof | NAR cancer, 2022-06, Vol.4 (2), p.zcac013-zcac013 |
issn | 2632-8674 2632-8674 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991968 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Cancer Computational Biology |
title | Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omics%20data%20integration%20analysis%20identifies%20the%20spliceosome%20as%20a%20key%20regulator%20of%20DNA%20double-strand%20break%20repair&rft.jtitle=NAR%20cancer&rft.au=Sherill-Rofe,%20Dana&rft.date=2022-06-01&rft.volume=4&rft.issue=2&rft.spage=zcac013&rft.epage=zcac013&rft.pages=zcac013-zcac013&rft.issn=2632-8674&rft.eissn=2632-8674&rft_id=info:doi/10.1093/narcan/zcac013&rft_dat=%3Cproquest_pubme%3E2649254609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649254609&rft_id=info:pmid/35399185&rfr_iscdi=true |