The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling
The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2′3′cGAMP. Here, we...
Gespeichert in:
Veröffentlicht in: | Nature immunology 2022-02, Vol.23 (2), p.287-302 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 2 |
container_start_page | 287 |
container_title | Nature immunology |
container_volume | 23 |
creator | Concepcion, Axel R. Wagner, Larry E. Zhu, Jingjie Tao, Anthony Y. Yang, Jun Khodadadi-Jamayran, Alireza Wang, Yin-Hu Liu, Menghan Rose, Rebecca E. Jones, Drew R. Coetzee, William A. Yule, David I. Feske, Stefan |
description | The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2′3′cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of
Lrrc8c
−/−
mice have increased cell cycle progression, proliferation, survival, Ca
2+
influx and cytokine production—a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2′3′cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function.
Lrrc8c
−/−
mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING–p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Concepcion et al. show that the volume-regulated anion channel LRRC8C mediates the transport of cGAMP in T cells, resulting in a noncanonical STING–p53-dependent suppression of Ca
2+
influx, T cell proliferation and cytokine production. |
doi_str_mv | 10.1038/s41590-021-01105-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624951900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7a24e8eec95e1e430d49b8ec73563c60a1c8910dedb4e4f3d28740e6332a39453</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsQu3YSewNEhqVUmlUpDKsLY9zJ-PKYwc7rjo71mx5wz5JPc10-FmwsqX7neNzfYriNcHvCab8NDJSC1ziipSYEFyXt0-KY1JXoqwEaZ4e7pgfFS9ivMaYsLZhz4sjWmdc8Pa4-LlYA7rxNm2gDNAnq0bokHLGO6TXyjmwaH51NeMzFNMwBIgRIlogDdaiVXJ63JHLLdqLjeuR3mprNOqMS9qCH00HaAzKxcGHMXt36Ovi4vL87sevoaYomt4pm3Uvi2crZSO82p8nxbdPZ4vZ53L-5fxi9nFeataysWxVxYADaFEDAUZxx8SSg25p3VDdYEU0FwR30C0ZsBXtKt4yDA2llaKC1fSk-DD5Dmm5gU6Dy-GsHILZqLCVXhn598SZtez9jeRCEIbbbPBubxD89wRxlBsTdx-iHPgUZdVUTNREYJzRt_-g1z6FvO9Eccx5u0tUTZQOPsYAq0MYguWuajlVLXPV8qFqeZtFb_5c4yB57DYDdAJiHrkewu-3_2N7D61YuAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624808875</pqid></control><display><type>article</type><title>The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Concepcion, Axel R. ; Wagner, Larry E. ; Zhu, Jingjie ; Tao, Anthony Y. ; Yang, Jun ; Khodadadi-Jamayran, Alireza ; Wang, Yin-Hu ; Liu, Menghan ; Rose, Rebecca E. ; Jones, Drew R. ; Coetzee, William A. ; Yule, David I. ; Feske, Stefan</creator><creatorcontrib>Concepcion, Axel R. ; Wagner, Larry E. ; Zhu, Jingjie ; Tao, Anthony Y. ; Yang, Jun ; Khodadadi-Jamayran, Alireza ; Wang, Yin-Hu ; Liu, Menghan ; Rose, Rebecca E. ; Jones, Drew R. ; Coetzee, William A. ; Yule, David I. ; Feske, Stefan</creatorcontrib><description>The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2′3′cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of
Lrrc8c
−/−
mice have increased cell cycle progression, proliferation, survival, Ca
2+
influx and cytokine production—a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2′3′cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function.
Lrrc8c
−/−
mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING–p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Concepcion et al. show that the volume-regulated anion channel LRRC8C mediates the transport of cGAMP in T cells, resulting in a noncanonical STING–p53-dependent suppression of Ca
2+
influx, T cell proliferation and cytokine production.</description><identifier>ISSN: 1529-2908</identifier><identifier>EISSN: 1529-2916</identifier><identifier>DOI: 10.1038/s41590-021-01105-x</identifier><identifier>PMID: 35105987</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/1619/554 ; 631/250/516 ; Adaptive immunity ; Animals ; Anions - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Calcium - metabolism ; Calcium influx ; Cell cycle ; Cell proliferation ; Cell size ; Cell survival ; Clonal deletion ; Cytokines ; Dinucleoside Phosphates - metabolism ; Experimental allergic encephalomyelitis ; Female ; Immunology ; Immunomodulation ; Infectious Diseases ; Influenza A ; Ion Channels - metabolism ; Kinases ; Lymphocytes ; Lymphocytes T ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Nucleotides, Cyclic - metabolism ; p53 Protein ; Phenotypes ; Signal transduction ; Signal Transduction - physiology ; T-Lymphocytes - metabolism ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Nature immunology, 2022-02, Vol.23 (2), p.287-302</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7a24e8eec95e1e430d49b8ec73563c60a1c8910dedb4e4f3d28740e6332a39453</citedby><cites>FETCH-LOGICAL-c474t-7a24e8eec95e1e430d49b8ec73563c60a1c8910dedb4e4f3d28740e6332a39453</cites><orcidid>0000-0001-5431-8178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41590-021-01105-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41590-021-01105-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35105987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Concepcion, Axel R.</creatorcontrib><creatorcontrib>Wagner, Larry E.</creatorcontrib><creatorcontrib>Zhu, Jingjie</creatorcontrib><creatorcontrib>Tao, Anthony Y.</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Khodadadi-Jamayran, Alireza</creatorcontrib><creatorcontrib>Wang, Yin-Hu</creatorcontrib><creatorcontrib>Liu, Menghan</creatorcontrib><creatorcontrib>Rose, Rebecca E.</creatorcontrib><creatorcontrib>Jones, Drew R.</creatorcontrib><creatorcontrib>Coetzee, William A.</creatorcontrib><creatorcontrib>Yule, David I.</creatorcontrib><creatorcontrib>Feske, Stefan</creatorcontrib><title>The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling</title><title>Nature immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2′3′cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of
Lrrc8c
−/−
mice have increased cell cycle progression, proliferation, survival, Ca
2+
influx and cytokine production—a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2′3′cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function.
Lrrc8c
−/−
mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING–p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Concepcion et al. show that the volume-regulated anion channel LRRC8C mediates the transport of cGAMP in T cells, resulting in a noncanonical STING–p53-dependent suppression of Ca
2+
influx, T cell proliferation and cytokine production.</description><subject>631/250/1619/554</subject><subject>631/250/516</subject><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Anions - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium - metabolism</subject><subject>Calcium influx</subject><subject>Cell cycle</subject><subject>Cell proliferation</subject><subject>Cell size</subject><subject>Cell survival</subject><subject>Clonal deletion</subject><subject>Cytokines</subject><subject>Dinucleoside Phosphates - metabolism</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Immunology</subject><subject>Immunomodulation</subject><subject>Infectious Diseases</subject><subject>Influenza A</subject><subject>Ion Channels - metabolism</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>p53 Protein</subject><subject>Phenotypes</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1529-2908</issn><issn>1529-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsQu3YSewNEhqVUmlUpDKsLY9zJ-PKYwc7rjo71mx5wz5JPc10-FmwsqX7neNzfYriNcHvCab8NDJSC1ziipSYEFyXt0-KY1JXoqwEaZ4e7pgfFS9ivMaYsLZhz4sjWmdc8Pa4-LlYA7rxNm2gDNAnq0bokHLGO6TXyjmwaH51NeMzFNMwBIgRIlogDdaiVXJ63JHLLdqLjeuR3mprNOqMS9qCH00HaAzKxcGHMXt36Ovi4vL87sevoaYomt4pm3Uvi2crZSO82p8nxbdPZ4vZ53L-5fxi9nFeataysWxVxYADaFEDAUZxx8SSg25p3VDdYEU0FwR30C0ZsBXtKt4yDA2llaKC1fSk-DD5Dmm5gU6Dy-GsHILZqLCVXhn598SZtez9jeRCEIbbbPBubxD89wRxlBsTdx-iHPgUZdVUTNREYJzRt_-g1z6FvO9Eccx5u0tUTZQOPsYAq0MYguWuajlVLXPV8qFqeZtFb_5c4yB57DYDdAJiHrkewu-3_2N7D61YuAQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Concepcion, Axel R.</creator><creator>Wagner, Larry E.</creator><creator>Zhu, Jingjie</creator><creator>Tao, Anthony Y.</creator><creator>Yang, Jun</creator><creator>Khodadadi-Jamayran, Alireza</creator><creator>Wang, Yin-Hu</creator><creator>Liu, Menghan</creator><creator>Rose, Rebecca E.</creator><creator>Jones, Drew R.</creator><creator>Coetzee, William A.</creator><creator>Yule, David I.</creator><creator>Feske, Stefan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5431-8178</orcidid></search><sort><creationdate>20220201</creationdate><title>The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling</title><author>Concepcion, Axel R. ; Wagner, Larry E. ; Zhu, Jingjie ; Tao, Anthony Y. ; Yang, Jun ; Khodadadi-Jamayran, Alireza ; Wang, Yin-Hu ; Liu, Menghan ; Rose, Rebecca E. ; Jones, Drew R. ; Coetzee, William A. ; Yule, David I. ; Feske, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7a24e8eec95e1e430d49b8ec73563c60a1c8910dedb4e4f3d28740e6332a39453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/250/1619/554</topic><topic>631/250/516</topic><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Anions - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium - metabolism</topic><topic>Calcium influx</topic><topic>Cell cycle</topic><topic>Cell proliferation</topic><topic>Cell size</topic><topic>Cell survival</topic><topic>Clonal deletion</topic><topic>Cytokines</topic><topic>Dinucleoside Phosphates - metabolism</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Immunology</topic><topic>Immunomodulation</topic><topic>Infectious Diseases</topic><topic>Influenza A</topic><topic>Ion Channels - metabolism</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>p53 Protein</topic><topic>Phenotypes</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Concepcion, Axel R.</creatorcontrib><creatorcontrib>Wagner, Larry E.</creatorcontrib><creatorcontrib>Zhu, Jingjie</creatorcontrib><creatorcontrib>Tao, Anthony Y.</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Khodadadi-Jamayran, Alireza</creatorcontrib><creatorcontrib>Wang, Yin-Hu</creatorcontrib><creatorcontrib>Liu, Menghan</creatorcontrib><creatorcontrib>Rose, Rebecca E.</creatorcontrib><creatorcontrib>Jones, Drew R.</creatorcontrib><creatorcontrib>Coetzee, William A.</creatorcontrib><creatorcontrib>Yule, David I.</creatorcontrib><creatorcontrib>Feske, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Concepcion, Axel R.</au><au>Wagner, Larry E.</au><au>Zhu, Jingjie</au><au>Tao, Anthony Y.</au><au>Yang, Jun</au><au>Khodadadi-Jamayran, Alireza</au><au>Wang, Yin-Hu</au><au>Liu, Menghan</au><au>Rose, Rebecca E.</au><au>Jones, Drew R.</au><au>Coetzee, William A.</au><au>Yule, David I.</au><au>Feske, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling</atitle><jtitle>Nature immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>287</spage><epage>302</epage><pages>287-302</pages><issn>1529-2908</issn><eissn>1529-2916</eissn><abstract>The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2′3′cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of
Lrrc8c
−/−
mice have increased cell cycle progression, proliferation, survival, Ca
2+
influx and cytokine production—a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2′3′cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function.
Lrrc8c
−/−
mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING–p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Concepcion et al. show that the volume-regulated anion channel LRRC8C mediates the transport of cGAMP in T cells, resulting in a noncanonical STING–p53-dependent suppression of Ca
2+
influx, T cell proliferation and cytokine production.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35105987</pmid><doi>10.1038/s41590-021-01105-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5431-8178</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-2908 |
ispartof | Nature immunology, 2022-02, Vol.23 (2), p.287-302 |
issn | 1529-2908 1529-2916 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991407 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/250/1619/554 631/250/516 Adaptive immunity Animals Anions - metabolism Biomedical and Life Sciences Biomedicine Calcium - metabolism Calcium influx Cell cycle Cell proliferation Cell size Cell survival Clonal deletion Cytokines Dinucleoside Phosphates - metabolism Experimental allergic encephalomyelitis Female Immunology Immunomodulation Infectious Diseases Influenza A Ion Channels - metabolism Kinases Lymphocytes Lymphocytes T Membrane Proteins - metabolism Mice Mice, Inbred C57BL Nucleotides, Cyclic - metabolism p53 Protein Phenotypes Signal transduction Signal Transduction - physiology T-Lymphocytes - metabolism Tumor Suppressor Protein p53 - metabolism |
title | The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING–p53 signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20volume-regulated%20anion%20channel%20LRRC8C%20suppresses%20T%20cell%20function%20by%20regulating%20cyclic%20dinucleotide%20transport%20and%20STING%E2%80%93p53%20signaling&rft.jtitle=Nature%20immunology&rft.au=Concepcion,%20Axel%20R.&rft.date=2022-02-01&rft.volume=23&rft.issue=2&rft.spage=287&rft.epage=302&rft.pages=287-302&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/s41590-021-01105-x&rft_dat=%3Cproquest_pubme%3E2624951900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624808875&rft_id=info:pmid/35105987&rfr_iscdi=true |