Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved]
Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their fligh...
Gespeichert in:
Veröffentlicht in: | F1000 research 2021, Vol.10, p.189-189 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 189 |
container_title | F1000 research |
container_volume | 10 |
creator | Darras, Kevin Yusti, Ellena Knorr, Andreas Huang, Joe Chun-Chia Kartono, Agus Priyono ., Ilham |
description | Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology. We evaluated the usefulness of the flight pattern information, echolocation call recordings, and near-infrared photographs produced by our sampling rig to determine a workflow to process these heterogenous data types. We present a conservative workflow to enable taxonomic discrimination and identification of bat detections. Our sampling rig and workflow allowed us to detect both echolocating and non-echolocating bats and we could assign 84% of the detections to a guild. Subsequent identification can be carried out with established methods such as taxonomic keys and call libraries, based on the visible morphological features and echolocation calls. Currently, a higher near-infrared picture quality is required to resolve more detailed diagnostic morphology, but there is considerable potential to extract more information with higher-intensity illumination. This is the first proof-of-concept for bat point counts, a method that can passively sample all flying bats in their natural environment. |
doi_str_mv | 10.12688/f1000research.51195.2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8987345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7e98403d00bd4dfb874158b670a0e73a</doaj_id><sourcerecordid>2652584409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4212-1f133dc76d18d4ca917d09fb774067363ee700a90e7212da4637602dbd9085923</originalsourceid><addsrcrecordid>eNqFkluLEzEUxwdR3GXdr7AEfPGlNbfJpYIgi5eFBR_UJ5GQyaVNnU7GZKalH8jvaaZdy9YXnxLm_M4vcw7_qrpBcI4wE-K1RxDC5LLTyazmNUKynuMn1SWGlM0Qhfjpo_tFdZ3zujRAKQnD_Hl1QWpKGBT4svr9RW_6NnRL4Nv9dDR6yGAXhhUYVi5tdAt0Z0FXXpqFziednAVho5cTO1XGdkg6x7FckzMx2VJYgJVOdlfYA7KL6adv4w74mCY_6GPoBmBKU3nr-9alHGIH8BvQO5eKZhvcbgEw0H2f4tbZHy-qZ1632V0_nFfVtw_vv95-mt1__nh3--5-ZihGeIY8IsQaziwSlhotEbdQ-oZzChknjDjHIdQSOl5wqykjnEFsGyuhqCUmV9Xd0WujXqs-lUHTXkUd1OFDTEul0xBM6xR3UlBILISNpdY3glNUi4ZxqIue6OJ6e3T1Y7Nx1riuLKo9k55XurBSy7hVQgpOaF0Erx4EKf4aXR7UJmTj2lZ3Lo5ZYVbjWlAKZUFf_oOu45i6sqqJ4mVoJieKHSmTYs7J-dPPIKgOwVJnwVKHYKlpLTePRzm1_Y1RARZHwGtTArGfLOqk-Y_9D7MR4DM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657700699</pqid></control><display><type>article</type><title>Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved]</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Darras, Kevin ; Yusti, Ellena ; Knorr, Andreas ; Huang, Joe Chun-Chia ; Kartono, Agus Priyono ; ., Ilham</creator><creatorcontrib>Darras, Kevin ; Yusti, Ellena ; Knorr, Andreas ; Huang, Joe Chun-Chia ; Kartono, Agus Priyono ; ., Ilham</creatorcontrib><description>Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology. We evaluated the usefulness of the flight pattern information, echolocation call recordings, and near-infrared photographs produced by our sampling rig to determine a workflow to process these heterogenous data types. We present a conservative workflow to enable taxonomic discrimination and identification of bat detections. Our sampling rig and workflow allowed us to detect both echolocating and non-echolocating bats and we could assign 84% of the detections to a guild. Subsequent identification can be carried out with established methods such as taxonomic keys and call libraries, based on the visible morphological features and echolocation calls. Currently, a higher near-infrared picture quality is required to resolve more detailed diagnostic morphology, but there is considerable potential to extract more information with higher-intensity illumination. This is the first proof-of-concept for bat point counts, a method that can passively sample all flying bats in their natural environment.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.51195.2</identifier><identifier>PMID: 35436082</identifier><language>eng</language><publisher>England: Faculty of 1000 Ltd</publisher><subject>Animals ; Auditory discrimination ; bat ; Bats ; Chiroptera ; Digital cameras ; Echolocation ; ecoacoustics ; eng ; Flight ; Flight, Animal ; I.R. radiation ; Information processing ; Light emitting diodes ; Method ; Methods ; Morphology ; near-infrared ; night vision ; Plantations ; point count ; Power supply ; Printed circuit boards ; Sampling ; Sensors ; Taxonomy ; thermal imaging ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Workflow</subject><ispartof>F1000 research, 2021, Vol.10, p.189-189</ispartof><rights>Copyright: © 2022 Darras K et al.</rights><rights>Copyright: © 2022 Darras K et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2022 Darras K et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4212-1f133dc76d18d4ca917d09fb774067363ee700a90e7212da4637602dbd9085923</cites><orcidid>0000-0002-9013-3784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987345/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987345/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,4022,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35436082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darras, Kevin</creatorcontrib><creatorcontrib>Yusti, Ellena</creatorcontrib><creatorcontrib>Knorr, Andreas</creatorcontrib><creatorcontrib>Huang, Joe Chun-Chia</creatorcontrib><creatorcontrib>Kartono, Agus Priyono</creatorcontrib><creatorcontrib>., Ilham</creatorcontrib><title>Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved]</title><title>F1000 research</title><addtitle>F1000Res</addtitle><description>Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology. We evaluated the usefulness of the flight pattern information, echolocation call recordings, and near-infrared photographs produced by our sampling rig to determine a workflow to process these heterogenous data types. We present a conservative workflow to enable taxonomic discrimination and identification of bat detections. Our sampling rig and workflow allowed us to detect both echolocating and non-echolocating bats and we could assign 84% of the detections to a guild. Subsequent identification can be carried out with established methods such as taxonomic keys and call libraries, based on the visible morphological features and echolocation calls. Currently, a higher near-infrared picture quality is required to resolve more detailed diagnostic morphology, but there is considerable potential to extract more information with higher-intensity illumination. This is the first proof-of-concept for bat point counts, a method that can passively sample all flying bats in their natural environment.</description><subject>Animals</subject><subject>Auditory discrimination</subject><subject>bat</subject><subject>Bats</subject><subject>Chiroptera</subject><subject>Digital cameras</subject><subject>Echolocation</subject><subject>ecoacoustics</subject><subject>eng</subject><subject>Flight</subject><subject>Flight, Animal</subject><subject>I.R. radiation</subject><subject>Information processing</subject><subject>Light emitting diodes</subject><subject>Method</subject><subject>Methods</subject><subject>Morphology</subject><subject>near-infrared</subject><subject>night vision</subject><subject>Plantations</subject><subject>point count</subject><subject>Power supply</subject><subject>Printed circuit boards</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Taxonomy</subject><subject>thermal imaging</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Workflow</subject><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFkluLEzEUxwdR3GXdr7AEfPGlNbfJpYIgi5eFBR_UJ5GQyaVNnU7GZKalH8jvaaZdy9YXnxLm_M4vcw7_qrpBcI4wE-K1RxDC5LLTyazmNUKynuMn1SWGlM0Qhfjpo_tFdZ3zujRAKQnD_Hl1QWpKGBT4svr9RW_6NnRL4Nv9dDR6yGAXhhUYVi5tdAt0Z0FXXpqFziednAVho5cTO1XGdkg6x7FckzMx2VJYgJVOdlfYA7KL6adv4w74mCY_6GPoBmBKU3nr-9alHGIH8BvQO5eKZhvcbgEw0H2f4tbZHy-qZ1632V0_nFfVtw_vv95-mt1__nh3--5-ZihGeIY8IsQaziwSlhotEbdQ-oZzChknjDjHIdQSOl5wqykjnEFsGyuhqCUmV9Xd0WujXqs-lUHTXkUd1OFDTEul0xBM6xR3UlBILISNpdY3glNUi4ZxqIue6OJ6e3T1Y7Nx1riuLKo9k55XurBSy7hVQgpOaF0Erx4EKf4aXR7UJmTj2lZ3Lo5ZYVbjWlAKZUFf_oOu45i6sqqJ4mVoJieKHSmTYs7J-dPPIKgOwVJnwVKHYKlpLTePRzm1_Y1RARZHwGtTArGfLOqk-Y_9D7MR4DM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Darras, Kevin</creator><creator>Yusti, Ellena</creator><creator>Knorr, Andreas</creator><creator>Huang, Joe Chun-Chia</creator><creator>Kartono, Agus Priyono</creator><creator>., Ilham</creator><general>Faculty of 1000 Ltd</general><general>F1000 Research Limited</general><general>F1000 Research Ltd</general><scope>C-E</scope><scope>CH4</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9013-3784</orcidid></search><sort><creationdate>2021</creationdate><title>Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved]</title><author>Darras, Kevin ; Yusti, Ellena ; Knorr, Andreas ; Huang, Joe Chun-Chia ; Kartono, Agus Priyono ; ., Ilham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4212-1f133dc76d18d4ca917d09fb774067363ee700a90e7212da4637602dbd9085923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Auditory discrimination</topic><topic>bat</topic><topic>Bats</topic><topic>Chiroptera</topic><topic>Digital cameras</topic><topic>Echolocation</topic><topic>ecoacoustics</topic><topic>eng</topic><topic>Flight</topic><topic>Flight, Animal</topic><topic>I.R. radiation</topic><topic>Information processing</topic><topic>Light emitting diodes</topic><topic>Method</topic><topic>Methods</topic><topic>Morphology</topic><topic>near-infrared</topic><topic>night vision</topic><topic>Plantations</topic><topic>point count</topic><topic>Power supply</topic><topic>Printed circuit boards</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Taxonomy</topic><topic>thermal imaging</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darras, Kevin</creatorcontrib><creatorcontrib>Yusti, Ellena</creatorcontrib><creatorcontrib>Knorr, Andreas</creatorcontrib><creatorcontrib>Huang, Joe Chun-Chia</creatorcontrib><creatorcontrib>Kartono, Agus Priyono</creatorcontrib><creatorcontrib>., Ilham</creatorcontrib><collection>F1000Research</collection><collection>Faculty of 1000</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darras, Kevin</au><au>Yusti, Ellena</au><au>Knorr, Andreas</au><au>Huang, Joe Chun-Chia</au><au>Kartono, Agus Priyono</au><au>., Ilham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved]</atitle><jtitle>F1000 research</jtitle><addtitle>F1000Res</addtitle><date>2021</date><risdate>2021</risdate><volume>10</volume><spage>189</spage><epage>189</epage><pages>189-189</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>Bat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology. We evaluated the usefulness of the flight pattern information, echolocation call recordings, and near-infrared photographs produced by our sampling rig to determine a workflow to process these heterogenous data types. We present a conservative workflow to enable taxonomic discrimination and identification of bat detections. Our sampling rig and workflow allowed us to detect both echolocating and non-echolocating bats and we could assign 84% of the detections to a guild. Subsequent identification can be carried out with established methods such as taxonomic keys and call libraries, based on the visible morphological features and echolocation calls. Currently, a higher near-infrared picture quality is required to resolve more detailed diagnostic morphology, but there is considerable potential to extract more information with higher-intensity illumination. This is the first proof-of-concept for bat point counts, a method that can passively sample all flying bats in their natural environment.</abstract><cop>England</cop><pub>Faculty of 1000 Ltd</pub><pmid>35436082</pmid><doi>10.12688/f1000research.51195.2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9013-3784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-1402 |
ispartof | F1000 research, 2021, Vol.10, p.189-189 |
issn | 2046-1402 2046-1402 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8987345 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Animals Auditory discrimination bat Bats Chiroptera Digital cameras Echolocation ecoacoustics eng Flight Flight, Animal I.R. radiation Information processing Light emitting diodes Method Methods Morphology near-infrared night vision Plantations point count Power supply Printed circuit boards Sampling Sensors Taxonomy thermal imaging Ultrasonic imaging Ultrasonography Ultrasound Workflow |
title | Sampling flying bats with thermal and near-infrared imaging and ultrasound recording: hardware and workflow for bat point counts [version 2; peer review: 2 approved] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20flying%20bats%20with%20thermal%20and%20near-infrared%20imaging%20and%20ultrasound%20recording:%20hardware%20and%20workflow%20for%20bat%20point%20counts%20%5Bversion%202;%20peer%20review:%202%20approved%5D&rft.jtitle=F1000%20research&rft.au=Darras,%20Kevin&rft.date=2021&rft.volume=10&rft.spage=189&rft.epage=189&rft.pages=189-189&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.51195.2&rft_dat=%3Cproquest_doaj_%3E2652584409%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657700699&rft_id=info:pmid/35436082&rft_doaj_id=oai_doaj_org_article_7e98403d00bd4dfb874158b670a0e73a&rfr_iscdi=true |