Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella
Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contribut...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2022-05, Vol.84 (5), p.56, Article 56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56 |
container_title | Bulletin of mathematical biology |
container_volume | 84 |
creator | Youlden, George McNeil, Helen E. Blair, Jessica M. A. Jabbari, Sara King, John R. |
description | Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular,
Salmonella
encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in
Salmonella
, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant
Salmonella
strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an
in silico
framework with which to test these potential adjuvants to counter MDR. |
doi_str_mv | 10.1007/s11538-022-01011-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647368846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</originalsourceid><addsrcrecordid>eNp9kUtvEzEQxy0EoiHwBTggS1y4LIz34V1fkKpQWqSuQDzO1tQ7mzja2MH2VnDng-M0pTwOHCyPNb__PPxn7KmAlwKgfRWFaKqugLIsQIAQhbrHFqLJTyWhvM8WAKosurKGE_Yoxi1kkarUQ3ZSZR1UJSzYjx7ThnaYrMGJ936gabJuzS_sejPlkyLPef7BJ3LJZmT0gZ-ToyzgPTq7n6cs9o5j5Oj46bCdr9Elnjxf-dklCvxsHKf5W9HTYDHRwPs3H7l1_BNOO-9yP3zMHow4RXpyey_Zl7dnn1cXxeX783er08vC1G2dCtMpg0OOlbyiVinToBoQYEQExFZSXZPCcaxNoyDHFYE0kjpJ40DUtNWSvT7W3c9XOxpMXingpPfB7jB81x6t_jvj7Eav_bXuVFc1-e-W7MVtgeC_zhST3tloDis48nPUpazbUgghZUaf_4Nu_RxcXu-GqmTX1QeqPFIm-BgDjXfDCNAHk_XRZJ1N1jcm68MUz_5c407yy9UMVEcg5pRbU_jd-z9lfwJOO7Vz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647368846</pqid></control><display><type>article</type><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</creator><creatorcontrib>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</creatorcontrib><description>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular,
Salmonella
encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in
Salmonella
, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant
Salmonella
strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an
in silico
framework with which to test these potential adjuvants to counter MDR.</description><identifier>ISSN: 0092-8240</identifier><identifier>ISSN: 1522-9602</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-022-01011-9</identifier><identifier>PMID: 35380320</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adjuvants ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cell Biology ; Diffusion pumps ; Drug Resistance, Multiple, Bacterial ; Efflux ; Expulsion ; Gram-negative bacteria ; Life Sciences ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Membrane Transport Proteins - genetics ; Models, Biological ; Multidrug resistance ; Nodulation ; Original ; Original Article ; Parameter sensitivity ; Partial differential equations ; Pumps ; Salmonella ; Salmonella - drug effects ; Salmonella - genetics ; Sensitivity analysis ; Substrates</subject><ispartof>Bulletin of mathematical biology, 2022-05, Vol.84 (5), p.56, Article 56</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</citedby><cites>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</cites><orcidid>0000-0002-1652-1949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-022-01011-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-022-01011-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Youlden, George</creatorcontrib><creatorcontrib>McNeil, Helen E.</creatorcontrib><creatorcontrib>Blair, Jessica M. A.</creatorcontrib><creatorcontrib>Jabbari, Sara</creatorcontrib><creatorcontrib>King, John R.</creatorcontrib><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular,
Salmonella
encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in
Salmonella
, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant
Salmonella
strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an
in silico
framework with which to test these potential adjuvants to counter MDR.</description><subject>Adjuvants</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Diffusion pumps</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>Efflux</subject><subject>Expulsion</subject><subject>Gram-negative bacteria</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Models, Biological</subject><subject>Multidrug resistance</subject><subject>Nodulation</subject><subject>Original</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Pumps</subject><subject>Salmonella</subject><subject>Salmonella - drug effects</subject><subject>Salmonella - genetics</subject><subject>Sensitivity analysis</subject><subject>Substrates</subject><issn>0092-8240</issn><issn>1522-9602</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEQxy0EoiHwBTggS1y4LIz34V1fkKpQWqSuQDzO1tQ7mzja2MH2VnDng-M0pTwOHCyPNb__PPxn7KmAlwKgfRWFaKqugLIsQIAQhbrHFqLJTyWhvM8WAKosurKGE_Yoxi1kkarUQ3ZSZR1UJSzYjx7ThnaYrMGJ936gabJuzS_sejPlkyLPef7BJ3LJZmT0gZ-ToyzgPTq7n6cs9o5j5Oj46bCdr9Elnjxf-dklCvxsHKf5W9HTYDHRwPs3H7l1_BNOO-9yP3zMHow4RXpyey_Zl7dnn1cXxeX783er08vC1G2dCtMpg0OOlbyiVinToBoQYEQExFZSXZPCcaxNoyDHFYE0kjpJ40DUtNWSvT7W3c9XOxpMXingpPfB7jB81x6t_jvj7Eav_bXuVFc1-e-W7MVtgeC_zhST3tloDis48nPUpazbUgghZUaf_4Nu_RxcXu-GqmTX1QeqPFIm-BgDjXfDCNAHk_XRZJ1N1jcm68MUz_5c407yy9UMVEcg5pRbU_jd-z9lfwJOO7Vz</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Youlden, George</creator><creator>McNeil, Helen E.</creator><creator>Blair, Jessica M. A.</creator><creator>Jabbari, Sara</creator><creator>King, John R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1652-1949</orcidid></search><sort><creationdate>20220501</creationdate><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><author>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjuvants</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Diffusion pumps</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>Efflux</topic><topic>Expulsion</topic><topic>Gram-negative bacteria</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Models, Biological</topic><topic>Multidrug resistance</topic><topic>Nodulation</topic><topic>Original</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Pumps</topic><topic>Salmonella</topic><topic>Salmonella - drug effects</topic><topic>Salmonella - genetics</topic><topic>Sensitivity analysis</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youlden, George</creatorcontrib><creatorcontrib>McNeil, Helen E.</creatorcontrib><creatorcontrib>Blair, Jessica M. A.</creatorcontrib><creatorcontrib>Jabbari, Sara</creatorcontrib><creatorcontrib>King, John R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youlden, George</au><au>McNeil, Helen E.</au><au>Blair, Jessica M. A.</au><au>Jabbari, Sara</au><au>King, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>84</volume><issue>5</issue><spage>56</spage><pages>56-</pages><artnum>56</artnum><issn>0092-8240</issn><issn>1522-9602</issn><eissn>1522-9602</eissn><abstract>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular,
Salmonella
encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in
Salmonella
, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant
Salmonella
strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an
in silico
framework with which to test these potential adjuvants to counter MDR.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35380320</pmid><doi>10.1007/s11538-022-01011-9</doi><orcidid>https://orcid.org/0000-0002-1652-1949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2022-05, Vol.84 (5), p.56, Article 56 |
issn | 0092-8240 1522-9602 1522-9602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983579 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adjuvants Anti-Bacterial Agents - pharmacology Antibiotics Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Cell Biology Diffusion pumps Drug Resistance, Multiple, Bacterial Efflux Expulsion Gram-negative bacteria Life Sciences Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Membrane Transport Proteins - genetics Models, Biological Multidrug resistance Nodulation Original Original Article Parameter sensitivity Partial differential equations Pumps Salmonella Salmonella - drug effects Salmonella - genetics Sensitivity analysis Substrates |
title | Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modelling%20Highlights%20the%20Potential%20for%20Genetic%20Manipulation%20as%20an%20Adjuvant%20to%20Counter%20Efflux-Mediated%20MDR%20in%20Salmonella&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Youlden,%20George&rft.date=2022-05-01&rft.volume=84&rft.issue=5&rft.spage=56&rft.pages=56-&rft.artnum=56&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-022-01011-9&rft_dat=%3Cproquest_pubme%3E2647368846%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647368846&rft_id=info:pmid/35380320&rfr_iscdi=true |