Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella

Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2022-05, Vol.84 (5), p.56, Article 56
Hauptverfasser: Youlden, George, McNeil, Helen E., Blair, Jessica M. A., Jabbari, Sara, King, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 56
container_title Bulletin of mathematical biology
container_volume 84
creator Youlden, George
McNeil, Helen E.
Blair, Jessica M. A.
Jabbari, Sara
King, John R.
description Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella , via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.
doi_str_mv 10.1007/s11538-022-01011-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647368846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</originalsourceid><addsrcrecordid>eNp9kUtvEzEQxy0EoiHwBTggS1y4LIz34V1fkKpQWqSuQDzO1tQ7mzja2MH2VnDng-M0pTwOHCyPNb__PPxn7KmAlwKgfRWFaKqugLIsQIAQhbrHFqLJTyWhvM8WAKosurKGE_Yoxi1kkarUQ3ZSZR1UJSzYjx7ThnaYrMGJ936gabJuzS_sejPlkyLPef7BJ3LJZmT0gZ-ToyzgPTq7n6cs9o5j5Oj46bCdr9Elnjxf-dklCvxsHKf5W9HTYDHRwPs3H7l1_BNOO-9yP3zMHow4RXpyey_Zl7dnn1cXxeX783er08vC1G2dCtMpg0OOlbyiVinToBoQYEQExFZSXZPCcaxNoyDHFYE0kjpJ40DUtNWSvT7W3c9XOxpMXingpPfB7jB81x6t_jvj7Eav_bXuVFc1-e-W7MVtgeC_zhST3tloDis48nPUpazbUgghZUaf_4Nu_RxcXu-GqmTX1QeqPFIm-BgDjXfDCNAHk_XRZJ1N1jcm68MUz_5c407yy9UMVEcg5pRbU_jd-z9lfwJOO7Vz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647368846</pqid></control><display><type>article</type><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</creator><creatorcontrib>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</creatorcontrib><description>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella , via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.</description><identifier>ISSN: 0092-8240</identifier><identifier>ISSN: 1522-9602</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-022-01011-9</identifier><identifier>PMID: 35380320</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adjuvants ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cell Biology ; Diffusion pumps ; Drug Resistance, Multiple, Bacterial ; Efflux ; Expulsion ; Gram-negative bacteria ; Life Sciences ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Membrane Transport Proteins - genetics ; Models, Biological ; Multidrug resistance ; Nodulation ; Original ; Original Article ; Parameter sensitivity ; Partial differential equations ; Pumps ; Salmonella ; Salmonella - drug effects ; Salmonella - genetics ; Sensitivity analysis ; Substrates</subject><ispartof>Bulletin of mathematical biology, 2022-05, Vol.84 (5), p.56, Article 56</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</citedby><cites>FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</cites><orcidid>0000-0002-1652-1949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-022-01011-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-022-01011-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Youlden, George</creatorcontrib><creatorcontrib>McNeil, Helen E.</creatorcontrib><creatorcontrib>Blair, Jessica M. A.</creatorcontrib><creatorcontrib>Jabbari, Sara</creatorcontrib><creatorcontrib>King, John R.</creatorcontrib><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella , via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.</description><subject>Adjuvants</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Diffusion pumps</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>Efflux</subject><subject>Expulsion</subject><subject>Gram-negative bacteria</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Models, Biological</subject><subject>Multidrug resistance</subject><subject>Nodulation</subject><subject>Original</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Pumps</subject><subject>Salmonella</subject><subject>Salmonella - drug effects</subject><subject>Salmonella - genetics</subject><subject>Sensitivity analysis</subject><subject>Substrates</subject><issn>0092-8240</issn><issn>1522-9602</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEQxy0EoiHwBTggS1y4LIz34V1fkKpQWqSuQDzO1tQ7mzja2MH2VnDng-M0pTwOHCyPNb__PPxn7KmAlwKgfRWFaKqugLIsQIAQhbrHFqLJTyWhvM8WAKosurKGE_Yoxi1kkarUQ3ZSZR1UJSzYjx7ThnaYrMGJ936gabJuzS_sejPlkyLPef7BJ3LJZmT0gZ-ToyzgPTq7n6cs9o5j5Oj46bCdr9Elnjxf-dklCvxsHKf5W9HTYDHRwPs3H7l1_BNOO-9yP3zMHow4RXpyey_Zl7dnn1cXxeX783er08vC1G2dCtMpg0OOlbyiVinToBoQYEQExFZSXZPCcaxNoyDHFYE0kjpJ40DUtNWSvT7W3c9XOxpMXingpPfB7jB81x6t_jvj7Eav_bXuVFc1-e-W7MVtgeC_zhST3tloDis48nPUpazbUgghZUaf_4Nu_RxcXu-GqmTX1QeqPFIm-BgDjXfDCNAHk_XRZJ1N1jcm68MUz_5c407yy9UMVEcg5pRbU_jd-z9lfwJOO7Vz</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Youlden, George</creator><creator>McNeil, Helen E.</creator><creator>Blair, Jessica M. A.</creator><creator>Jabbari, Sara</creator><creator>King, John R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1652-1949</orcidid></search><sort><creationdate>20220501</creationdate><title>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</title><author>Youlden, George ; McNeil, Helen E. ; Blair, Jessica M. A. ; Jabbari, Sara ; King, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c89cadc4796be799c5a9da00faa0aa76e44e9aff4c59044e3e06c6e86efdee573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjuvants</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Diffusion pumps</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>Efflux</topic><topic>Expulsion</topic><topic>Gram-negative bacteria</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Models, Biological</topic><topic>Multidrug resistance</topic><topic>Nodulation</topic><topic>Original</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Pumps</topic><topic>Salmonella</topic><topic>Salmonella - drug effects</topic><topic>Salmonella - genetics</topic><topic>Sensitivity analysis</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youlden, George</creatorcontrib><creatorcontrib>McNeil, Helen E.</creatorcontrib><creatorcontrib>Blair, Jessica M. A.</creatorcontrib><creatorcontrib>Jabbari, Sara</creatorcontrib><creatorcontrib>King, John R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youlden, George</au><au>McNeil, Helen E.</au><au>Blair, Jessica M. A.</au><au>Jabbari, Sara</au><au>King, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>84</volume><issue>5</issue><spage>56</spage><pages>56-</pages><artnum>56</artnum><issn>0092-8240</issn><issn>1522-9602</issn><eissn>1522-9602</eissn><abstract>Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella , via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35380320</pmid><doi>10.1007/s11538-022-01011-9</doi><orcidid>https://orcid.org/0000-0002-1652-1949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2022-05, Vol.84 (5), p.56, Article 56
issn 0092-8240
1522-9602
1522-9602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8983579
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adjuvants
Anti-Bacterial Agents - pharmacology
Antibiotics
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cell Biology
Diffusion pumps
Drug Resistance, Multiple, Bacterial
Efflux
Expulsion
Gram-negative bacteria
Life Sciences
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Membrane Transport Proteins - genetics
Models, Biological
Multidrug resistance
Nodulation
Original
Original Article
Parameter sensitivity
Partial differential equations
Pumps
Salmonella
Salmonella - drug effects
Salmonella - genetics
Sensitivity analysis
Substrates
title Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modelling%20Highlights%20the%20Potential%20for%20Genetic%20Manipulation%20as%20an%20Adjuvant%20to%20Counter%20Efflux-Mediated%20MDR%20in%20Salmonella&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Youlden,%20George&rft.date=2022-05-01&rft.volume=84&rft.issue=5&rft.spage=56&rft.pages=56-&rft.artnum=56&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-022-01011-9&rft_dat=%3Cproquest_pubme%3E2647368846%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647368846&rft_id=info:pmid/35380320&rfr_iscdi=true