Insight into the exemplary structural, elastic, electronic and optical nature of GaBeCl3 and InBeCl3: a DFT study

In the scheme of density functional theory (DFT), Structural, elastic, electronic, and optical properties calculations of GaBeCl3 and InBeCl3 are carried out using Tran–Blaha modified Becke–Johnson exchange potential approximation (TB-mBJ) installed in Wein2k software. Structurally the compounds of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-03, Vol.12 (13), p.8172-8177
Hauptverfasser: Saima Ahmad Shah, Husain, Mudasser, Rahman, Nasir, Sohail, Mohammad, Khan, Rajwali, Abid Ali Khan, Ullah, Asad, Abdelmohsen, Shaimaa A M, Abdelbacki, Ashraf M M, El-Sabrout, Ahmed M, Elansary, Hosam O, Khan, Aurangzeb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the scheme of density functional theory (DFT), Structural, elastic, electronic, and optical properties calculations of GaBeCl3 and InBeCl3 are carried out using Tran–Blaha modified Becke–Johnson exchange potential approximation (TB-mBJ) installed in Wein2k software. Structurally the compounds of interest are found to be stable. Both compounds possess elastic stability, anisotropy, and ductility determined by the elastic studies. The electronic-band structure analysis shows the semiconductor nature of GaBeCl3 and InBeCl3 compounds with indirect band gaps of ∼3.08 eV for GaBeCl3 and ∼2.04 eV for InBeCl3 along with the symmetrical points from (X–Γ). The calculated total density of states (TDOS) and partial density of states (PDOS) of these compounds reveal that for the GaBeCl3 compound, the contribution of Ga (4p) and Cl (3p) orbital states in the valence, as well as the conduction band, is dominant. While for InBeCl3, the contribution of Cl (3p) states as well as In (5s) is large in the valence band and in that of Cl (3p-states) states in the conduction band. The type of chemical bonding is found to be ionic in both compounds. The optical properties i.e., the real (ϵ1(ω)) and imaginary (ϵ2(ω)) parts of dielectric function, refractive index n(ω), optical reflectivity R(ω), optical conductivity σ(ω), absorption coefficient α(ω), energy loss L(ω) and electron extinction coefficient k(ω) are also discussed in terms of optical spectra. It is reported that n(ω) and k(ω) exhibit the same characteristics as ϵ1(ω) and ϵ2(ω) respectively. Efficient application of these materials can be seen in semiconducting industries and many modern electronic devices.
ISSN:2046-2069
DOI:10.1039/d2ra00943a