Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population
The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electro...
Gespeichert in:
Veröffentlicht in: | Radiology. Artificial intelligence 2022-03, Vol.4 (2), p.e210196-e210196 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e210196 |
---|---|
container_issue | 2 |
container_start_page | e210196 |
container_title | Radiology. Artificial intelligence |
container_volume | 4 |
creator | Monti, Caterina B van Assen, Marly Stillman, Arthur E Lee, Scott J Hoelzer, Philipp Fung, George S K Secchi, Francesco Sardanelli, Francesco De Cecco, Carlo N |
description | The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (
= .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (
< .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset.
CT, Vascular, Aorta © RSNA, 2022. |
doi_str_mv | 10.1148/ryai.210196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8980874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2648895072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4f3116876a29c6f8e5d461fd629916a4ee325cb5ececb7cf8620d7db51dfd64b3</originalsourceid><addsrcrecordid>eNpVkU9PGzEQxa2KqkGUU--Vj0go4H_r9V4qRYE2lShwoGfL651N3O6ug-1NxXfgQ7ObhCg9vZHmN29m9BD6QskVpUJdhxfjrhgltJAf0CmTXE0lJeTkqJ6g8xj_EEIYFSJj5BOa8IwXNM_5KXq93ZimN8l1S5xWgB8h1D60prOAfY0Nnvtu45s-Od-ZBt9DH7aS_vnwF8-apQ8urVo8DOFfYGIfRqenlQ_GOotnPqRBbpxpIUGI2HWD52Ks_RI68H3Ej37dN2Zc8Bl9rE0T4XyvZ-j399un-WJ69_Dj53x2N7Vc0TQVNadUqlwaVlhZK8gqIWldSVYUVBoBwFlmywws2DK3tZKMVHlVZrQaIFHyM_Rt57vuyxYqC10avtLr4FoTXrQ3Tv_f6dxKL_1Gq0IRlYvB4GJvEPxzDzHp1kULTWO2L2kmhVJFRnI2oJc71AYfY4D6sIYSPUaoxwj1LsKB_np82YF9D4y_ATetnAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648895072</pqid></control><display><type>article</type><title>Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Monti, Caterina B ; van Assen, Marly ; Stillman, Arthur E ; Lee, Scott J ; Hoelzer, Philipp ; Fung, George S K ; Secchi, Francesco ; Sardanelli, Francesco ; De Cecco, Carlo N</creator><creatorcontrib>Monti, Caterina B ; van Assen, Marly ; Stillman, Arthur E ; Lee, Scott J ; Hoelzer, Philipp ; Fung, George S K ; Secchi, Francesco ; Sardanelli, Francesco ; De Cecco, Carlo N</creatorcontrib><description>The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (
= .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (
< .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset.
CT, Vascular, Aorta © RSNA, 2022.</description><identifier>ISSN: 2638-6100</identifier><identifier>EISSN: 2638-6100</identifier><identifier>DOI: 10.1148/ryai.210196</identifier><identifier>PMID: 35391773</identifier><language>eng</language><publisher>United States: Radiological Society of North America</publisher><subject>AI in Brief</subject><ispartof>Radiology. Artificial intelligence, 2022-03, Vol.4 (2), p.e210196-e210196</ispartof><rights>2022 by the Radiological Society of North America, Inc.</rights><rights>2022 by the Radiological Society of North America, Inc. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4f3116876a29c6f8e5d461fd629916a4ee325cb5ececb7cf8620d7db51dfd64b3</citedby><cites>FETCH-LOGICAL-c381t-4f3116876a29c6f8e5d461fd629916a4ee325cb5ececb7cf8620d7db51dfd64b3</cites><orcidid>0000-0002-9539-8642 ; 0000-0002-7911-1920 ; 0000-0002-6039-4414 ; 0000-0002-0357-1808 ; 0000-0002-2956-3101 ; 0000-0003-4044-4426 ; 0000-0001-6545-9427 ; 0000-0002-2913-3777 ; 0000-0003-0319-5475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980874/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980874/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35391773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monti, Caterina B</creatorcontrib><creatorcontrib>van Assen, Marly</creatorcontrib><creatorcontrib>Stillman, Arthur E</creatorcontrib><creatorcontrib>Lee, Scott J</creatorcontrib><creatorcontrib>Hoelzer, Philipp</creatorcontrib><creatorcontrib>Fung, George S K</creatorcontrib><creatorcontrib>Secchi, Francesco</creatorcontrib><creatorcontrib>Sardanelli, Francesco</creatorcontrib><creatorcontrib>De Cecco, Carlo N</creatorcontrib><title>Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population</title><title>Radiology. Artificial intelligence</title><addtitle>Radiol Artif Intell</addtitle><description>The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (
= .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (
< .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset.
CT, Vascular, Aorta © RSNA, 2022.</description><subject>AI in Brief</subject><issn>2638-6100</issn><issn>2638-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU9PGzEQxa2KqkGUU--Vj0go4H_r9V4qRYE2lShwoGfL651N3O6ug-1NxXfgQ7ObhCg9vZHmN29m9BD6QskVpUJdhxfjrhgltJAf0CmTXE0lJeTkqJ6g8xj_EEIYFSJj5BOa8IwXNM_5KXq93ZimN8l1S5xWgB8h1D60prOAfY0Nnvtu45s-Od-ZBt9DH7aS_vnwF8-apQ8urVo8DOFfYGIfRqenlQ_GOotnPqRBbpxpIUGI2HWD52Ks_RI68H3Ej37dN2Zc8Bl9rE0T4XyvZ-j399un-WJ69_Dj53x2N7Vc0TQVNadUqlwaVlhZK8gqIWldSVYUVBoBwFlmywws2DK3tZKMVHlVZrQaIFHyM_Rt57vuyxYqC10avtLr4FoTXrQ3Tv_f6dxKL_1Gq0IRlYvB4GJvEPxzDzHp1kULTWO2L2kmhVJFRnI2oJc71AYfY4D6sIYSPUaoxwj1LsKB_np82YF9D4y_ATetnAM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Monti, Caterina B</creator><creator>van Assen, Marly</creator><creator>Stillman, Arthur E</creator><creator>Lee, Scott J</creator><creator>Hoelzer, Philipp</creator><creator>Fung, George S K</creator><creator>Secchi, Francesco</creator><creator>Sardanelli, Francesco</creator><creator>De Cecco, Carlo N</creator><general>Radiological Society of North America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9539-8642</orcidid><orcidid>https://orcid.org/0000-0002-7911-1920</orcidid><orcidid>https://orcid.org/0000-0002-6039-4414</orcidid><orcidid>https://orcid.org/0000-0002-0357-1808</orcidid><orcidid>https://orcid.org/0000-0002-2956-3101</orcidid><orcidid>https://orcid.org/0000-0003-4044-4426</orcidid><orcidid>https://orcid.org/0000-0001-6545-9427</orcidid><orcidid>https://orcid.org/0000-0002-2913-3777</orcidid><orcidid>https://orcid.org/0000-0003-0319-5475</orcidid></search><sort><creationdate>20220301</creationdate><title>Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population</title><author>Monti, Caterina B ; van Assen, Marly ; Stillman, Arthur E ; Lee, Scott J ; Hoelzer, Philipp ; Fung, George S K ; Secchi, Francesco ; Sardanelli, Francesco ; De Cecco, Carlo N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4f3116876a29c6f8e5d461fd629916a4ee325cb5ececb7cf8620d7db51dfd64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AI in Brief</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monti, Caterina B</creatorcontrib><creatorcontrib>van Assen, Marly</creatorcontrib><creatorcontrib>Stillman, Arthur E</creatorcontrib><creatorcontrib>Lee, Scott J</creatorcontrib><creatorcontrib>Hoelzer, Philipp</creatorcontrib><creatorcontrib>Fung, George S K</creatorcontrib><creatorcontrib>Secchi, Francesco</creatorcontrib><creatorcontrib>Sardanelli, Francesco</creatorcontrib><creatorcontrib>De Cecco, Carlo N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiology. Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monti, Caterina B</au><au>van Assen, Marly</au><au>Stillman, Arthur E</au><au>Lee, Scott J</au><au>Hoelzer, Philipp</au><au>Fung, George S K</au><au>Secchi, Francesco</au><au>Sardanelli, Francesco</au><au>De Cecco, Carlo N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population</atitle><jtitle>Radiology. Artificial intelligence</jtitle><addtitle>Radiol Artif Intell</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>4</volume><issue>2</issue><spage>e210196</spage><epage>e210196</epage><pages>e210196-e210196</pages><issn>2638-6100</issn><eissn>2638-6100</eissn><abstract>The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (
= .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (
< .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset.
CT, Vascular, Aorta © RSNA, 2022.</abstract><cop>United States</cop><pub>Radiological Society of North America</pub><pmid>35391773</pmid><doi>10.1148/ryai.210196</doi><orcidid>https://orcid.org/0000-0002-9539-8642</orcidid><orcidid>https://orcid.org/0000-0002-7911-1920</orcidid><orcidid>https://orcid.org/0000-0002-6039-4414</orcidid><orcidid>https://orcid.org/0000-0002-0357-1808</orcidid><orcidid>https://orcid.org/0000-0002-2956-3101</orcidid><orcidid>https://orcid.org/0000-0003-4044-4426</orcidid><orcidid>https://orcid.org/0000-0001-6545-9427</orcidid><orcidid>https://orcid.org/0000-0002-2913-3777</orcidid><orcidid>https://orcid.org/0000-0003-0319-5475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2638-6100 |
ispartof | Radiology. Artificial intelligence, 2022-03, Vol.4 (2), p.e210196-e210196 |
issn | 2638-6100 2638-6100 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8980874 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | AI in Brief |
title | Evaluating the Performance of a Convolutional Neural Network Algorithm for Measuring Thoracic Aortic Diameters in a Heterogeneous Population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Performance%20of%20a%20Convolutional%20Neural%20Network%20Algorithm%20for%20Measuring%20Thoracic%20Aortic%20Diameters%20in%20a%20Heterogeneous%20Population&rft.jtitle=Radiology.%20Artificial%20intelligence&rft.au=Monti,%20Caterina%20B&rft.date=2022-03-01&rft.volume=4&rft.issue=2&rft.spage=e210196&rft.epage=e210196&rft.pages=e210196-e210196&rft.issn=2638-6100&rft.eissn=2638-6100&rft_id=info:doi/10.1148/ryai.210196&rft_dat=%3Cproquest_pubme%3E2648895072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648895072&rft_id=info:pmid/35391773&rfr_iscdi=true |