Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching
In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have mov...
Gespeichert in:
Veröffentlicht in: | Annals of data science 2022, Vol.9 (5), p.967-982 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 982 |
---|---|
container_issue | 5 |
container_start_page | 967 |
container_title | Annals of data science |
container_volume | 9 |
creator | Guo, Siying Liu, Jianxuan Wang, Qiu |
description | In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have moved to an unprecedented hybrid learning module during the COVID-19 pandemic where learning modes include hybrid and fully remote learning, while students were clustered within a class and school region. It is challenging to evaluate the effectiveness of the learning outcomes of the multilevel treatments in a hierarchically data structured. In this paper, we study a covariates matching method and develop a generalized propensity score matching method to reduce the bias of estimation in the intervention effect. We also propose simple algorithms to assess the covariates balance for each approach. We examine the finite sample performance of the methods via simulation studies and apply the proposed methods to analyze the effectiveness of learning modes during the COVID-19 pandemic. |
doi_str_mv | 10.1007/s40745-022-00392-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8977832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039809450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361x-445ea7867f0d3869ec0e52f1f804e4a07d618cde089efb34c77d1939dbe8a2eb3</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS0EAgR8AQ7VHrksHf_Z2O4BqQrQIgWB1MLVON5ZMNqsg70bhW-P00BEL5zG0vzmeeY9Qo4pnFIA-T0JkKIqgbESgGtWLrfIPqNalZWibHvzBrFHjlJ6BgBGBTBe7ZI9rkZMaE33ycNF06Dr_QKLCdrY-e6xOB_iqoxv7q_OS6p_FNdD2_sWF9gW47Cw0dseU3Fte_e0Am1XF7cxzLFLvn8t_rgQcdM9JDuNbRMevdcDcnd58Xf8u5zc_Loa_5yUjo_oshSiQivVSDZQ5-00OsCKNbTJB6CwIOsRVa5GUBqbKRdOyppqruspKstwyg_I2Vp3PkxnWDvs-mhbM49-ZuOrCdab_zudfzKPYWGUllJxlgVO3gVieBkw9Wbmk8O2tR2GIRmeXVagRQUZZWvUxZBSxGbzDQWzSses0zE5HfMvHbPMQ98-L7gZ-cgiA3wNpPnKf4zmOQyxy6Z9JfsGYy2ceA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039809450</pqid></control><display><type>article</type><title>Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching</title><source>Springer Online Journals - JUSTICE</source><creator>Guo, Siying ; Liu, Jianxuan ; Wang, Qiu</creator><creatorcontrib>Guo, Siying ; Liu, Jianxuan ; Wang, Qiu</creatorcontrib><description>In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have moved to an unprecedented hybrid learning module during the COVID-19 pandemic where learning modes include hybrid and fully remote learning, while students were clustered within a class and school region. It is challenging to evaluate the effectiveness of the learning outcomes of the multilevel treatments in a hierarchically data structured. In this paper, we study a covariates matching method and develop a generalized propensity score matching method to reduce the bias of estimation in the intervention effect. We also propose simple algorithms to assess the covariates balance for each approach. We examine the finite sample performance of the methods via simulation studies and apply the proposed methods to analyze the effectiveness of learning modes during the COVID-19 pandemic.</description><identifier>ISSN: 2198-5804</identifier><identifier>ISSN: 2198-5812</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-022-00392-x</identifier><identifier>PMID: 38624991</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Business and Management ; Economics ; Finance ; Insurance ; Management ; Statistics for Business</subject><ispartof>Annals of data science, 2022, Vol.9 (5), p.967-982</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361x-445ea7867f0d3869ec0e52f1f804e4a07d618cde089efb34c77d1939dbe8a2eb3</citedby><cites>FETCH-LOGICAL-c361x-445ea7867f0d3869ec0e52f1f804e4a07d618cde089efb34c77d1939dbe8a2eb3</cites><orcidid>0000-0002-6461-9895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-022-00392-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-022-00392-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38624991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Siying</creatorcontrib><creatorcontrib>Liu, Jianxuan</creatorcontrib><creatorcontrib>Wang, Qiu</creatorcontrib><title>Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><addtitle>Ann Data Sci</addtitle><description>In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have moved to an unprecedented hybrid learning module during the COVID-19 pandemic where learning modes include hybrid and fully remote learning, while students were clustered within a class and school region. It is challenging to evaluate the effectiveness of the learning outcomes of the multilevel treatments in a hierarchically data structured. In this paper, we study a covariates matching method and develop a generalized propensity score matching method to reduce the bias of estimation in the intervention effect. We also propose simple algorithms to assess the covariates balance for each approach. We examine the finite sample performance of the methods via simulation studies and apply the proposed methods to analyze the effectiveness of learning modes during the COVID-19 pandemic.</description><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS0EAgR8AQ7VHrksHf_Z2O4BqQrQIgWB1MLVON5ZMNqsg70bhW-P00BEL5zG0vzmeeY9Qo4pnFIA-T0JkKIqgbESgGtWLrfIPqNalZWibHvzBrFHjlJ6BgBGBTBe7ZI9rkZMaE33ycNF06Dr_QKLCdrY-e6xOB_iqoxv7q_OS6p_FNdD2_sWF9gW47Cw0dseU3Fte_e0Am1XF7cxzLFLvn8t_rgQcdM9JDuNbRMevdcDcnd58Xf8u5zc_Loa_5yUjo_oshSiQivVSDZQ5-00OsCKNbTJB6CwIOsRVa5GUBqbKRdOyppqruspKstwyg_I2Vp3PkxnWDvs-mhbM49-ZuOrCdab_zudfzKPYWGUllJxlgVO3gVieBkw9Wbmk8O2tR2GIRmeXVagRQUZZWvUxZBSxGbzDQWzSses0zE5HfMvHbPMQ98-L7gZ-cgiA3wNpPnKf4zmOQyxy6Z9JfsGYy2ceA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guo, Siying</creator><creator>Liu, Jianxuan</creator><creator>Wang, Qiu</creator><general>Springer Berlin Heidelberg</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6461-9895</orcidid></search><sort><creationdate>2022</creationdate><title>Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching</title><author>Guo, Siying ; Liu, Jianxuan ; Wang, Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361x-445ea7867f0d3869ec0e52f1f804e4a07d618cde089efb34c77d1939dbe8a2eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Siying</creatorcontrib><creatorcontrib>Liu, Jianxuan</creatorcontrib><creatorcontrib>Wang, Qiu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Siying</au><au>Liu, Jianxuan</au><au>Wang, Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><addtitle>Ann Data Sci</addtitle><date>2022</date><risdate>2022</risdate><volume>9</volume><issue>5</issue><spage>967</spage><epage>982</epage><pages>967-982</pages><issn>2198-5804</issn><issn>2198-5812</issn><eissn>2198-5812</eissn><abstract>In large-scale observational data with a hierarchical structure, both clusters and interventions often have more than two levels. Popular methods in the binary treatment literature do not naturally extend to the hierarchical multilevel treatment case. For example, most K-12 and universities have moved to an unprecedented hybrid learning module during the COVID-19 pandemic where learning modes include hybrid and fully remote learning, while students were clustered within a class and school region. It is challenging to evaluate the effectiveness of the learning outcomes of the multilevel treatments in a hierarchically data structured. In this paper, we study a covariates matching method and develop a generalized propensity score matching method to reduce the bias of estimation in the intervention effect. We also propose simple algorithms to assess the covariates balance for each approach. We examine the finite sample performance of the methods via simulation studies and apply the proposed methods to analyze the effectiveness of learning modes during the COVID-19 pandemic.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38624991</pmid><doi>10.1007/s40745-022-00392-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6461-9895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-5804 |
ispartof | Annals of data science, 2022, Vol.9 (5), p.967-982 |
issn | 2198-5804 2198-5812 2198-5812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8977832 |
source | Springer Online Journals - JUSTICE |
subjects | Artificial Intelligence Business and Management Economics Finance Insurance Management Statistics for Business |
title | Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Learning%20During%20COVID-19:%20Multilevel%20Covariates%20Matching%20and%20Propensity%20Score%20Matching&rft.jtitle=Annals%20of%20data%20science&rft.au=Guo,%20Siying&rft.date=2022&rft.volume=9&rft.issue=5&rft.spage=967&rft.epage=982&rft.pages=967-982&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-022-00392-x&rft_dat=%3Cproquest_pubme%3E3039809450%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039809450&rft_id=info:pmid/38624991&rfr_iscdi=true |