A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning

Purpose The purpose of this study is to propose algorithms and methods for achieving high accuracy in tracking and interception irradiation technology for tumors that move by respiration using MR-linac (MRIdian®, ViewRay Inc.) and to use deep learning to predict the movement of moving tumors in real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curēus (Palo Alto, CA) CA), 2022-03, Vol.14 (3), p.e22826-e22826
Hauptverfasser: Tamura, Yuto, Demachi, Kazuyuki, Igaki, Hiroshi, Okamoto, Hiroyuki, Nakano, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22826
container_issue 3
container_start_page e22826
container_title Curēus (Palo Alto, CA)
container_volume 14
creator Tamura, Yuto
Demachi, Kazuyuki
Igaki, Hiroshi
Okamoto, Hiroyuki
Nakano, Masahiro
description Purpose The purpose of this study is to propose algorithms and methods for achieving high accuracy in tracking and interception irradiation technology for tumors that move by respiration using MR-linac (MRIdian®, ViewRay Inc.) and to use deep learning to predict the movement of moving tumors in real time during radiation therapy and reconstruct cine magnetic resonance imaging (cine-MRI) into four-dimensional (4D) movies. Methods In this study, we propose a reconstruction algorithm using 4DCT for treatment planning taken before irradiation as training data in consideration of the actual treatment flow. In the algorithm, two neural networks made before treatment are used to reconstruct 4D movies that predict tumor movement in real time during treatment. Cycle GAN (generative adversarial network) was used to convert MR images to CT images, and long short-term memory was used to convert cine-MRI to 4D movies and predict tumor movement. Results We succeeded in predicting the time including the imaging time of the MR images, the lag until irradiation, and the calculation time in the algorithm. In addition, the conversion and prediction results at each phase of reconstruction were generally good so that they could be clinically applied. Conclusions The reconstruction algorithm proposed in this study enables high-precision radiotherapy while predicting the volume information of the tumor and the actual tumor position, which could not be obtained during radiotherapy.
doi_str_mv 10.7759/cureus.22826
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8976689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647656849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bc58e897d98984371d32fc71c1d9305d75eb1fb634c8842bd36ee1512d3c97cb3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EolXpjTOyxKVIpPgj_sgFabVtYaVFSFV7thxnkrpK7MVOQPz7etlSFU4ezzzz2jMvQm8pOVdKNJ_ckmDJ54xpJl-gY0alrjTV9ctn8RE6zfmeEEKJYkSR1-iIC64ZVeoY_Vrha7BjdeMnwFdxSdVFiUL2MdixlFwMeU6Lm0sCr8YhJj_fTTj2eO0DVN_sEGD2rpC5dAQHeDPZwYcBnx2A680HfJv3iQuAHd6CTaHc3qBXvR0znD6eJ-j26vJm_bXafv-yWa-2leNSzFXrhAbdqK7Rja65oh1nvVPU0a7hRHRKQEv7VvLaaV2ztuMSgArKOu4a5Vp-gj4fdHdLO0HnIMzJjmaX_GTTbxOtN_9Wgr8zQ_xpyqNS6qYInD0KpPhjgTybyWcH42gDxCUbJmslhdT1Hn3_H3pfFlr2uKeEkpwTrQv18UC5FHNO0D99hhKzN9UcTDV_TC34u-cDPMF_LeQPmd-emQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657633088</pqid></control><display><type>article</type><title>A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning</title><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Tamura, Yuto ; Demachi, Kazuyuki ; Igaki, Hiroshi ; Okamoto, Hiroyuki ; Nakano, Masahiro</creator><creatorcontrib>Tamura, Yuto ; Demachi, Kazuyuki ; Igaki, Hiroshi ; Okamoto, Hiroyuki ; Nakano, Masahiro</creatorcontrib><description>Purpose The purpose of this study is to propose algorithms and methods for achieving high accuracy in tracking and interception irradiation technology for tumors that move by respiration using MR-linac (MRIdian®, ViewRay Inc.) and to use deep learning to predict the movement of moving tumors in real time during radiation therapy and reconstruct cine magnetic resonance imaging (cine-MRI) into four-dimensional (4D) movies. Methods In this study, we propose a reconstruction algorithm using 4DCT for treatment planning taken before irradiation as training data in consideration of the actual treatment flow. In the algorithm, two neural networks made before treatment are used to reconstruct 4D movies that predict tumor movement in real time during treatment. Cycle GAN (generative adversarial network) was used to convert MR images to CT images, and long short-term memory was used to convert cine-MRI to 4D movies and predict tumor movement. Results We succeeded in predicting the time including the imaging time of the MR images, the lag until irradiation, and the calculation time in the algorithm. In addition, the conversion and prediction results at each phase of reconstruction were generally good so that they could be clinically applied. Conclusions The reconstruction algorithm proposed in this study enables high-precision radiotherapy while predicting the volume information of the tumor and the actual tumor position, which could not be obtained during radiotherapy.</description><identifier>ISSN: 2168-8184</identifier><identifier>EISSN: 2168-8184</identifier><identifier>DOI: 10.7759/cureus.22826</identifier><identifier>PMID: 35382177</identifier><language>eng</language><publisher>United States: Cureus Inc</publisher><subject>3-D films ; Accuracy ; Algorithms ; Cancer therapies ; Lung cancer ; Magnetic resonance imaging ; Neural networks ; Patients ; Radiation Oncology ; Radiation therapy ; Radiology ; Real time ; Therapeutics ; Tumors</subject><ispartof>Curēus (Palo Alto, CA), 2022-03, Vol.14 (3), p.e22826-e22826</ispartof><rights>Copyright © 2022, Tamura et al.</rights><rights>Copyright © 2022, Tamura et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022, Tamura et al. 2022 Tamura et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-bc58e897d98984371d32fc71c1d9305d75eb1fb634c8842bd36ee1512d3c97cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976689/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976689/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35382177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamura, Yuto</creatorcontrib><creatorcontrib>Demachi, Kazuyuki</creatorcontrib><creatorcontrib>Igaki, Hiroshi</creatorcontrib><creatorcontrib>Okamoto, Hiroyuki</creatorcontrib><creatorcontrib>Nakano, Masahiro</creatorcontrib><title>A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning</title><title>Curēus (Palo Alto, CA)</title><addtitle>Cureus</addtitle><description>Purpose The purpose of this study is to propose algorithms and methods for achieving high accuracy in tracking and interception irradiation technology for tumors that move by respiration using MR-linac (MRIdian®, ViewRay Inc.) and to use deep learning to predict the movement of moving tumors in real time during radiation therapy and reconstruct cine magnetic resonance imaging (cine-MRI) into four-dimensional (4D) movies. Methods In this study, we propose a reconstruction algorithm using 4DCT for treatment planning taken before irradiation as training data in consideration of the actual treatment flow. In the algorithm, two neural networks made before treatment are used to reconstruct 4D movies that predict tumor movement in real time during treatment. Cycle GAN (generative adversarial network) was used to convert MR images to CT images, and long short-term memory was used to convert cine-MRI to 4D movies and predict tumor movement. Results We succeeded in predicting the time including the imaging time of the MR images, the lag until irradiation, and the calculation time in the algorithm. In addition, the conversion and prediction results at each phase of reconstruction were generally good so that they could be clinically applied. Conclusions The reconstruction algorithm proposed in this study enables high-precision radiotherapy while predicting the volume information of the tumor and the actual tumor position, which could not be obtained during radiotherapy.</description><subject>3-D films</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cancer therapies</subject><subject>Lung cancer</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Radiation Oncology</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Real time</subject><subject>Therapeutics</subject><subject>Tumors</subject><issn>2168-8184</issn><issn>2168-8184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EolXpjTOyxKVIpPgj_sgFabVtYaVFSFV7thxnkrpK7MVOQPz7etlSFU4ezzzz2jMvQm8pOVdKNJ_ckmDJ54xpJl-gY0alrjTV9ctn8RE6zfmeEEKJYkSR1-iIC64ZVeoY_Vrha7BjdeMnwFdxSdVFiUL2MdixlFwMeU6Lm0sCr8YhJj_fTTj2eO0DVN_sEGD2rpC5dAQHeDPZwYcBnx2A680HfJv3iQuAHd6CTaHc3qBXvR0znD6eJ-j26vJm_bXafv-yWa-2leNSzFXrhAbdqK7Rja65oh1nvVPU0a7hRHRKQEv7VvLaaV2ztuMSgArKOu4a5Vp-gj4fdHdLO0HnIMzJjmaX_GTTbxOtN_9Wgr8zQ_xpyqNS6qYInD0KpPhjgTybyWcH42gDxCUbJmslhdT1Hn3_H3pfFlr2uKeEkpwTrQv18UC5FHNO0D99hhKzN9UcTDV_TC34u-cDPMF_LeQPmd-emQ</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Tamura, Yuto</creator><creator>Demachi, Kazuyuki</creator><creator>Igaki, Hiroshi</creator><creator>Okamoto, Hiroyuki</creator><creator>Nakano, Masahiro</creator><general>Cureus Inc</general><general>Cureus</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220303</creationdate><title>A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning</title><author>Tamura, Yuto ; Demachi, Kazuyuki ; Igaki, Hiroshi ; Okamoto, Hiroyuki ; Nakano, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bc58e897d98984371d32fc71c1d9305d75eb1fb634c8842bd36ee1512d3c97cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D films</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cancer therapies</topic><topic>Lung cancer</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Radiation Oncology</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Real time</topic><topic>Therapeutics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamura, Yuto</creatorcontrib><creatorcontrib>Demachi, Kazuyuki</creatorcontrib><creatorcontrib>Igaki, Hiroshi</creatorcontrib><creatorcontrib>Okamoto, Hiroyuki</creatorcontrib><creatorcontrib>Nakano, Masahiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Curēus (Palo Alto, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamura, Yuto</au><au>Demachi, Kazuyuki</au><au>Igaki, Hiroshi</au><au>Okamoto, Hiroyuki</au><au>Nakano, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning</atitle><jtitle>Curēus (Palo Alto, CA)</jtitle><addtitle>Cureus</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>e22826</spage><epage>e22826</epage><pages>e22826-e22826</pages><issn>2168-8184</issn><eissn>2168-8184</eissn><abstract>Purpose The purpose of this study is to propose algorithms and methods for achieving high accuracy in tracking and interception irradiation technology for tumors that move by respiration using MR-linac (MRIdian®, ViewRay Inc.) and to use deep learning to predict the movement of moving tumors in real time during radiation therapy and reconstruct cine magnetic resonance imaging (cine-MRI) into four-dimensional (4D) movies. Methods In this study, we propose a reconstruction algorithm using 4DCT for treatment planning taken before irradiation as training data in consideration of the actual treatment flow. In the algorithm, two neural networks made before treatment are used to reconstruct 4D movies that predict tumor movement in real time during treatment. Cycle GAN (generative adversarial network) was used to convert MR images to CT images, and long short-term memory was used to convert cine-MRI to 4D movies and predict tumor movement. Results We succeeded in predicting the time including the imaging time of the MR images, the lag until irradiation, and the calculation time in the algorithm. In addition, the conversion and prediction results at each phase of reconstruction were generally good so that they could be clinically applied. Conclusions The reconstruction algorithm proposed in this study enables high-precision radiotherapy while predicting the volume information of the tumor and the actual tumor position, which could not be obtained during radiotherapy.</abstract><cop>United States</cop><pub>Cureus Inc</pub><pmid>35382177</pmid><doi>10.7759/cureus.22826</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-8184
ispartof Curēus (Palo Alto, CA), 2022-03, Vol.14 (3), p.e22826-e22826
issn 2168-8184
2168-8184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8976689
source PubMed Central; PubMed Central Open Access
subjects 3-D films
Accuracy
Algorithms
Cancer therapies
Lung cancer
Magnetic resonance imaging
Neural networks
Patients
Radiation Oncology
Radiation therapy
Radiology
Real time
Therapeutics
Tumors
title A Real-Time Four-Dimensional Reconstruction Algorithm of Cine-Magnetic Resonance Imaging (Cine-MRI) Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Real-Time%20Four-Dimensional%20Reconstruction%20Algorithm%20of%20Cine-Magnetic%20Resonance%20Imaging%20(Cine-MRI)%20Using%20Deep%20Learning&rft.jtitle=Cur%C4%93us%20(Palo%20Alto,%20CA)&rft.au=Tamura,%20Yuto&rft.date=2022-03-03&rft.volume=14&rft.issue=3&rft.spage=e22826&rft.epage=e22826&rft.pages=e22826-e22826&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759/cureus.22826&rft_dat=%3Cproquest_pubme%3E2647656849%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657633088&rft_id=info:pmid/35382177&rfr_iscdi=true