Advances in NK cell production

Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular & molecular immunology 2022-04, Vol.19 (4), p.460-481
Hauptverfasser: Fang, Fang, Xie, Siqi, Chen, Minhua, Li, Yutong, Yue, Jingjing, Ma, Jie, Shu, Xun, He, Yongge, Xiao, Weihua, Tian, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 4
container_start_page 460
container_title Cellular & molecular immunology
container_volume 19
creator Fang, Fang
Xie, Siqi
Chen, Minhua
Li, Yutong
Yue, Jingjing
Ma, Jie
Shu, Xun
He, Yongge
Xiao, Weihua
Tian, Zhigang
description Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine−antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
doi_str_mv 10.1038/s41423-021-00808-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8975878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616957149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-75bccd74b26c68a59badcbac004dd80b93730dece9fd773b6cd3b94f41812c0d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyyqSmzYBMaPxPYGqap4CQQbWFuO7ZRUaVLsphJ_j0tKKSxYjTVz5o7vRegUwwUGKi4Dw4zQBAhOAASIhO6hPgFGYotk-zvvHjoKYQaQCsbZIepRJgWVKe2j4diudG1cGJX16OlhZFxVjRa-sa1Zlk19jA4KXQV3sqkD9Hpz_TK5Sx6fb-8n48fERMFlwtPcGMtZTjKTCZ3KXFuTawPArBWQS8opWGecLCznNM-MpblkBcMCEwOWDtBVp7to87mzxtVLryu18OVc-w_V6FL9ntTlm5o2KyUkTwUXUeB8I-Cb99aFpZqXYW1G165pgyIZzmTKMZMRPfuDzprW19FepFgGhBFYU6SjjG9C8K7YfgaDWsevuvhVjF99xa9oXBru2tiufOcdAdoBIY7qqfM_t_-R_QSfk49s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646024209</pqid></control><display><type>article</type><title>Advances in NK cell production</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fang, Fang ; Xie, Siqi ; Chen, Minhua ; Li, Yutong ; Yue, Jingjing ; Ma, Jie ; Shu, Xun ; He, Yongge ; Xiao, Weihua ; Tian, Zhigang</creator><creatorcontrib>Fang, Fang ; Xie, Siqi ; Chen, Minhua ; Li, Yutong ; Yue, Jingjing ; Ma, Jie ; Shu, Xun ; He, Yongge ; Xiao, Weihua ; Tian, Zhigang</creatorcontrib><description>Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine−antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.</description><identifier>ISSN: 2042-0226</identifier><identifier>ISSN: 1672-7681</identifier><identifier>EISSN: 2042-0226</identifier><identifier>DOI: 10.1038/s41423-021-00808-3</identifier><identifier>PMID: 34983953</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/251 ; 692/4028/67/1059 ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; Cell lines ; Cell Proliferation ; Cord blood ; Cytokines ; Cytotoxicity ; Expansion ; Feeder Cells ; Fetal Blood ; Immunology ; Immunotherapy ; Killer Cells, Natural ; Leukocytes, Mononuclear ; Lymphocytes T ; Major histocompatibility complex ; Medical Microbiology ; Microbiology ; Natural killer cells ; Peripheral blood mononuclear cells ; Pluripotency ; Review ; Review Article ; Stem cells ; Umbilical cord ; Vaccine</subject><ispartof>Cellular &amp; molecular immunology, 2022-04, Vol.19 (4), p.460-481</ispartof><rights>The Author(s), under exclusive licence to CSI and USTC 2021</rights><rights>2021. The Author(s), under exclusive licence to CSI and USTC.</rights><rights>The Author(s), under exclusive licence to CSI and USTC 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-75bccd74b26c68a59badcbac004dd80b93730dece9fd773b6cd3b94f41812c0d3</citedby><cites>FETCH-LOGICAL-c474t-75bccd74b26c68a59badcbac004dd80b93730dece9fd773b6cd3b94f41812c0d3</cites><orcidid>0000-0003-1105-2626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975878/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975878/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34983953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Xie, Siqi</creatorcontrib><creatorcontrib>Chen, Minhua</creatorcontrib><creatorcontrib>Li, Yutong</creatorcontrib><creatorcontrib>Yue, Jingjing</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Shu, Xun</creatorcontrib><creatorcontrib>He, Yongge</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Tian, Zhigang</creatorcontrib><title>Advances in NK cell production</title><title>Cellular &amp; molecular immunology</title><addtitle>Cell Mol Immunol</addtitle><addtitle>Cell Mol Immunol</addtitle><description>Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine−antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.</description><subject>631/250/251</subject><subject>692/4028/67/1059</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Cord blood</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Expansion</subject><subject>Feeder Cells</subject><subject>Fetal Blood</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Killer Cells, Natural</subject><subject>Leukocytes, Mononuclear</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Natural killer cells</subject><subject>Peripheral blood mononuclear cells</subject><subject>Pluripotency</subject><subject>Review</subject><subject>Review Article</subject><subject>Stem cells</subject><subject>Umbilical cord</subject><subject>Vaccine</subject><issn>2042-0226</issn><issn>1672-7681</issn><issn>2042-0226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyyqSmzYBMaPxPYGqap4CQQbWFuO7ZRUaVLsphJ_j0tKKSxYjTVz5o7vRegUwwUGKi4Dw4zQBAhOAASIhO6hPgFGYotk-zvvHjoKYQaQCsbZIepRJgWVKe2j4diudG1cGJX16OlhZFxVjRa-sa1Zlk19jA4KXQV3sqkD9Hpz_TK5Sx6fb-8n48fERMFlwtPcGMtZTjKTCZ3KXFuTawPArBWQS8opWGecLCznNM-MpblkBcMCEwOWDtBVp7to87mzxtVLryu18OVc-w_V6FL9ntTlm5o2KyUkTwUXUeB8I-Cb99aFpZqXYW1G165pgyIZzmTKMZMRPfuDzprW19FepFgGhBFYU6SjjG9C8K7YfgaDWsevuvhVjF99xa9oXBru2tiufOcdAdoBIY7qqfM_t_-R_QSfk49s</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Fang, Fang</creator><creator>Xie, Siqi</creator><creator>Chen, Minhua</creator><creator>Li, Yutong</creator><creator>Yue, Jingjing</creator><creator>Ma, Jie</creator><creator>Shu, Xun</creator><creator>He, Yongge</creator><creator>Xiao, Weihua</creator><creator>Tian, Zhigang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1105-2626</orcidid></search><sort><creationdate>20220401</creationdate><title>Advances in NK cell production</title><author>Fang, Fang ; Xie, Siqi ; Chen, Minhua ; Li, Yutong ; Yue, Jingjing ; Ma, Jie ; Shu, Xun ; He, Yongge ; Xiao, Weihua ; Tian, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-75bccd74b26c68a59badcbac004dd80b93730dece9fd773b6cd3b94f41812c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/250/251</topic><topic>692/4028/67/1059</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Cord blood</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Expansion</topic><topic>Feeder Cells</topic><topic>Fetal Blood</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Killer Cells, Natural</topic><topic>Leukocytes, Mononuclear</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Natural killer cells</topic><topic>Peripheral blood mononuclear cells</topic><topic>Pluripotency</topic><topic>Review</topic><topic>Review Article</topic><topic>Stem cells</topic><topic>Umbilical cord</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Xie, Siqi</creatorcontrib><creatorcontrib>Chen, Minhua</creatorcontrib><creatorcontrib>Li, Yutong</creatorcontrib><creatorcontrib>Yue, Jingjing</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Shu, Xun</creatorcontrib><creatorcontrib>He, Yongge</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Tian, Zhigang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular &amp; molecular immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Fang</au><au>Xie, Siqi</au><au>Chen, Minhua</au><au>Li, Yutong</au><au>Yue, Jingjing</au><au>Ma, Jie</au><au>Shu, Xun</au><au>He, Yongge</au><au>Xiao, Weihua</au><au>Tian, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in NK cell production</atitle><jtitle>Cellular &amp; molecular immunology</jtitle><stitle>Cell Mol Immunol</stitle><addtitle>Cell Mol Immunol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>460</spage><epage>481</epage><pages>460-481</pages><issn>2042-0226</issn><issn>1672-7681</issn><eissn>2042-0226</eissn><abstract>Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine−antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34983953</pmid><doi>10.1038/s41423-021-00808-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1105-2626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2042-0226
ispartof Cellular & molecular immunology, 2022-04, Vol.19 (4), p.460-481
issn 2042-0226
1672-7681
2042-0226
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8975878
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 631/250/251
692/4028/67/1059
Antibodies
Biomedical and Life Sciences
Biomedicine
Cell lines
Cell Proliferation
Cord blood
Cytokines
Cytotoxicity
Expansion
Feeder Cells
Fetal Blood
Immunology
Immunotherapy
Killer Cells, Natural
Leukocytes, Mononuclear
Lymphocytes T
Major histocompatibility complex
Medical Microbiology
Microbiology
Natural killer cells
Peripheral blood mononuclear cells
Pluripotency
Review
Review Article
Stem cells
Umbilical cord
Vaccine
title Advances in NK cell production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20NK%20cell%20production&rft.jtitle=Cellular%20&%20molecular%20immunology&rft.au=Fang,%20Fang&rft.date=2022-04-01&rft.volume=19&rft.issue=4&rft.spage=460&rft.epage=481&rft.pages=460-481&rft.issn=2042-0226&rft.eissn=2042-0226&rft_id=info:doi/10.1038/s41423-021-00808-3&rft_dat=%3Cproquest_pubme%3E2616957149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646024209&rft_id=info:pmid/34983953&rfr_iscdi=true